2^k Factorial Designs

Introduction:

- Suppose we have a number of factors controlling a process (say, factors A, B, C, D, ...).

- Example - A Chemical Process
 Factor A - temperature
 Factor B - concentration of one or more chemical constituents
 Factor C - catalysts
 Factor D - reaction times
 etc.

- We will assume that each factor is crossed with all of the other factors.

- Each level of each factor appears in all other levels of every other factor.

- Example

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30°C</td>
</tr>
<tr>
<td>50 cc/l</td>
<td>y_{11}</td>
</tr>
<tr>
<td>100 cc/l</td>
<td>y_{21}</td>
</tr>
<tr>
<td>150 cc/l</td>
<td>y_{31}</td>
</tr>
</tbody>
</table>

- We can have factorial arrangements of treatments in designs such as CRD, RCBD, LS, and C-0.

- Let \(a \) be the number of levels of Factor A, \(b \) be the number of levels of Factor B, and so on... . Some of the potential hypotheses we may be interested are

 1. Main Effects:
 \[H_0 : \mu_{A_1} = \mu_{A_2} = \ldots = \mu_{A_a} \quad H_0 : \mu_{B_1} = \mu_{B_2} = \ldots = \mu_{B_b} \]

 2. Two-Way Interactions:
 \[H_0 : \text{Factor A does not interact with Factor B} \]

 3. Three-Way Interactions: (if there are three treatments)

Problems incurred with these types of experiments.

- Suppose we have \(a \) levels of A, \(b \) levels of B, etc.

- The total number of treatments = \(a \times b \times c \times \ldots \).

- If you have a large number of factors, the total can be very large.

- In a \(2^k \) Factorial Design, we will limit the number of levels of each factor to 2.
• That is, we have 2 levels per treatment.
• These designs are typically used to “screen” potential factors.
• In other words, which factors are important?
• The advantages are that we can minimize the number of treatments and the computations of sums of squares are relatively easy.

Calculating the ANOVA Table.

The entire ANOVA table for a 2^k Factorial design can be calculated using contrasts.

Recall that a treatment contrast is calculated as $\psi = \sum c_i \mu_i$ where μ_i are the treatment means and $\sum c_i = 0$.

Notation:

• Let A_1 be the first level of Factor A, A_2 be the second level of Factor A.
• Similarly, B_1 and B_2 are the first and second levels of Factor B, respectively.
• Since the factors are crossed, then if we have $k = 2$, we have $2^2 = 4$ treatment combinations given by A_1B_1, A_1B_2, A_2B_1, and A_2B_2.
• For constructing contrasts for the ANOVA, many texts switch to an alternative notation.
• Suppose a given treatment combination receives a small letter corresponding to each factor appearing at its high level. Then for $k = 2$ we have

<table>
<thead>
<tr>
<th>Notation</th>
<th>A_1B_1</th>
<th>A_1B_2</th>
<th>A_2B_1</th>
<th>A_2B_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative Notation</td>
<td>(1)</td>
<td>b</td>
<td>a</td>
<td>ab</td>
</tr>
</tbody>
</table>

Contrast Construction:

Using the notation above (for a, b, above - and possibly c if we have $k = 3$, etc), let X be an arbitrary effect. That is, X may be equal to Factor A, or possibly the interaction term AB.

The contrast for X is given by

$$\psi_X = (a \pm 1)(b \pm 1)(c \pm 1)\ldots$$

where the sign, “±” in each parenthesis will be

(−) if the corresponding factor appears in X, and

(+) if the corresponding factor appears otherwise.

Example - 2^3 Factorial design

Suppose we have three factors A, B, and C each at two levels. Consider the following:
Using our formula above we have

1. $\psi_A = (a - 1)(b + 1)(c + 1)$.
2. $\psi_B = (a + 1)(b - 1)(c + 1)$.
3. $\psi_C = (a + 1)(b + 1)(c - 1)$.
4. $\psi_{AB} = (a - 1)(b - 1)(c + 1)$.
5. $\psi_{AC} = (a - 1)(b + 1)(c - 1)$.
6. $\psi_{BC} = (a + 1)(b - 1)(c - 1)$.
7. $\psi_{ABC} = (a - 1)(b - 1)(c - 1)$.

The sums of squares for a particular contrast is given by

$$SS_\psi = \frac{r \hat{\psi}^2}{2^k}$$

where r is the number of replicates for the mean used in the contrast.

Example - Machine Lifetimes
An engineer is interested in the effect of (A) cutting speed, (B) tool geometry, and (C) cutting angle on the lifetime of a machine tool. A completely randomized design was carried out with a 2^3 factorial arrangements of treatments. The following data were collected.
A few calculations:
Let \(r \) denote the number of replicates per treatment combination. Let \(t \) be the total number of treatments which in this case \(t = 2^3 = 8 \).

- The grand sum \(y_{...} = 980 \)
- Total sum of squares \(\sum_{i=1}^{8} \sum_{j=1}^{3} y_{ij}^2 - y_{...}^2 / tr = 2095.33 \)
- Sum of squares due to treatments

\[
SS_{\text{treat}} = \frac{1}{r} \sum_{i=1}^{t} y_{i.}^2 - y_{...}^2 / tr = 1612.667
\]

- Sum of squares due to error

\[
SS_{\text{error}} = \sum_{i=1}^{t} \sum_{j=1}^{r} y_{ij}^2 - \frac{1}{r} \sum_{i=1}^{t} y_{i.}^2 = 482.667
\]

The treatment sums, means, and related contrast coefficients are summarized below.

<table>
<thead>
<tr>
<th>contrasts</th>
<th>(A_1B_1C_1)</th>
<th>(A_1B_1C_2)</th>
<th>(A_1B_2C_1)</th>
<th>(A_1B_2C_2)</th>
<th>(A_2B_1C_1)</th>
<th>(A_2B_1C_2)</th>
<th>(A_2B_2C_1)</th>
<th>(A_2B_2C_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum</td>
<td>78</td>
<td>127</td>
<td>119</td>
<td>164</td>
<td>104</td>
<td>113</td>
<td>148</td>
<td>127</td>
</tr>
<tr>
<td>mean</td>
<td>26.000</td>
<td>42.333</td>
<td>39.667</td>
<td>54.667</td>
<td>34.667</td>
<td>37.667</td>
<td>49.333</td>
<td>42.333</td>
</tr>
</tbody>
</table>

Calculation of Sums of Squares

<table>
<thead>
<tr>
<th>Source</th>
<th>Formula</th>
<th>Details</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SS_A)</td>
<td>(\frac{3}{2r} \psi_A^2)</td>
<td>(3(1.333)^2/8)</td>
<td>0.667</td>
</tr>
<tr>
<td>(SS_B)</td>
<td>(\frac{3}{2r} \psi_B^2)</td>
<td>(3(45.333)^2/8)</td>
<td>770.667</td>
</tr>
<tr>
<td>(SS_C)</td>
<td>(\frac{3}{2r} \psi_C^2)</td>
<td>(3(27.333)^2/8)</td>
<td>280.167</td>
</tr>
<tr>
<td>(SS_{AB})</td>
<td>(\frac{3}{2r} \psi_{AB}^2)</td>
<td>(3(-6.667)^2/8)</td>
<td>16.667</td>
</tr>
<tr>
<td>(SS_{AC})</td>
<td>(\frac{3}{2r} \psi_{AC}^2)</td>
<td>(3(-35.333)^2/8)</td>
<td>468.167</td>
</tr>
<tr>
<td>(SS_{BC})</td>
<td>(\frac{3}{2r} \psi_{BC}^2)</td>
<td>(3(-10.333)^2/8)</td>
<td>48.167</td>
</tr>
<tr>
<td>(SS_{ABC})</td>
<td>(\frac{3}{2r} \psi_{ABC}^2)</td>
<td>(3(-8.667)^2/8)</td>
<td>28.167</td>
</tr>
</tbody>
</table>
ANOVA

<table>
<thead>
<tr>
<th>Source</th>
<th>d.f.</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>.667</td>
<td>.667</td>
<td>.02</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>770.667</td>
<td>770.667</td>
<td>25.55</td>
<td>**</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>280.167</td>
<td>280.167</td>
<td>9.29</td>
<td>**</td>
</tr>
<tr>
<td>AB</td>
<td>1</td>
<td>16.667</td>
<td>16.667</td>
<td>.55</td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>1</td>
<td>468.167</td>
<td>468.167</td>
<td>15.52</td>
<td>**</td>
</tr>
<tr>
<td>BC</td>
<td>1</td>
<td>48.167</td>
<td>48.167</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>ABC</td>
<td>1</td>
<td>28.167</td>
<td>28.167</td>
<td>.93</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>16</td>
<td>482.667</td>
<td>30.167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>2095.333</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusions:
1. Factors B and C (tool geometry and cutting angle) are important factors.
2. Factor B is the most important (examine the magnitudes of the sums of squares).
3. There is significant interaction between Factor A (cutting speed) and C (cutting angle).
4. A plot of the A by C means reveals the following:
 at a low cutting angle, increasing the speed yields an increase in lifetime.
 at a high cutting angle, increasing speed yields decreases in lifetime.
What should you recommend?