Solutions:

Math 1730 - Exam 1
Fall 2002

1. Define function: (5 pts) see text

2. Given \(f(x) = 2x^5 - 7x^3 + 4x \), show that \(f \) is even, odd, or neither. (5 pts)

 See example 1(b) on p. 153 of text

3. Given \(f(x) = 3x^2 + 24x + 50 \), express \(f(x) \) in the form \(a(x - h)^2 + k \). (5 pts)

 See example 2 on p. 170 of text.

4. With respect to the function given in question 3.

 a. Does \(f(x) \) have a minimum or a maximum? ("Yes" is not an appropriate solution) (2 pts)

 \(f \) has a minimum

 b. Where is the location of the minimum (or maximum) of \(f(x) \). (2 pts)

 the minimum is located at the point \((-4, 2)\).

 c. What is the minimum (or maximum) of \(f(x) \). (2 pts)

 the minimum is -2.

5. Given \(f(x) = \sqrt{x}, g(x) = x^2 - 3, \) and \(h(x) = 4x \)

 a. Find \((f \circ g)(x)\). (2 pts)

 \((f \circ g)(x) = \sqrt{x^2 - 3}\)

 b. Give the domain of \((f \circ g)(x)\). (2 pts)

 Domain: \((-\infty, -\sqrt{3}] \cup [\sqrt{3}, \infty)\)

 c. Solve \((g + h)(x) = 0\). (Simplify as much as possible) (5 pts.)

 Solve \(x^2 + 4x - 3 = 0\)

 \(x = -2 \pm \sqrt{7}\).

6. Given \(f(x) = \frac{1}{3x^2 - 2}, \)

 a. Show that \(f \) is one-to-one. (5 pts)

 Use the definition of one-to-one. Begin with "Suppose \(f(a) = f(b) \)" and work down to concluding that \(a = b \).

1
b. Find $f^{-1}(x)$. (5 pts)

 $f^{-1}(x) = (1 + 2x)/(3x)$.

Extra Credit:

The problem is worth 2 pts added to your Exam 1 test grade. No partial credit will be given. Please circle your answer.

Find the range of the function given by

$$f(x) = \begin{cases}
-2x + 5 & x \leq -1 \\
x^2 & -1 < x < 1 \\
-2 & x \geq 1
\end{cases}$$