Theorem 7. Every open ball is an open set. Every closed ball is a closed set, where a closed ball is defined to be a set of the form \(\{ p : p \) is a point and \(d(x,p) \leq \varepsilon \} \).

Theorem 8. Let \(A \) and \(B \) be closed sets. Then \(A \cap B \) and \(A \cup B \) are closed sets.

Theorem 9. Let \(A \) and \(B \) be open sets. Then \(A \cap B \) and \(A \cup B \) are open sets.

1.5 Notations for some sets. We will adopt the following notation for this class (most of which are quite standard). The notation \(x \in A \) means that the point \(x \) is a member, or element, of the set \(A \). The symbol \(\mathbb{Z} \) denotes the set of all integers (\(\mathbb{Z} = \{ 0,1,-1,2,-2,\ldots \} \)), \(\mathbb{N} \) denotes the strictly positive integers (\(\mathbb{N} = \{ 1,2,3,\ldots \} \)) and \(\omega \) denotes the non-negative integers (\(\omega = \mathbb{N} \cup \{ 0 \} \)). Also, \(\mathbb{R} \) denotes the set of all real numbers (we will say more later about what the term “real number” really means), \(\mathbb{Q} \) denotes the set of all rational numbers (\(\mathbb{Q} = \{ x \in \mathbb{R} : x = n/m \) for some \(n,m \in \mathbb{Z} \} \)), and \(\mathbb{P} \) denotes the set of all irrational numbers (\(\mathbb{P} = \{ x \in \mathbb{R} : x \notin \mathbb{Q} \} \)).

1.6 Definition. Let \(A_1, A_2, A_3, \ldots \) be an infinite sequence of sets. Then the infinite union and the infinite intersection of this sequence are defined by:

\[
\bigcup_{n=1}^{\infty} A_n \overset{\text{def}}{=} \{ x : x \in A_n \text{ for some } n \in \mathbb{N} \} \quad \bigcap_{n=1}^{\infty} A_n \overset{\text{def}}{=} \{ x : x \in A_n \text{ for every } n \in \mathbb{N} \}
\]

1.7 Definition. A set \(A \) is bounded means that there is some point \(x \) and some number \(r > 0 \) such that \(A \subset B_r(x) \).

Proposition 10. Let \(A_1, A_2, \ldots \) be an infinite sequence of closed sets. Then: (a) \(\bigcup_{n=1}^{\infty} A_n \) is a closed set, and (b) \(\bigcap_{n=1}^{\infty} A_n \) is a closed set.

Proposition 11. Let \(A_1, A_2, \ldots \) be an infinite sequence of open sets. Then: (a) \(\bigcup_{n=1}^{\infty} A_n \) is an open set, and (b) \(\bigcap_{n=1}^{\infty} A_n \) is an open set.

Proposition 12. Let \(A_1, A_2, \ldots \) be an infinite sequence of non-empty closed and bounded sets. Then \(\bigcap_{n=1}^{\infty} A_n \neq \emptyset \). Furthermore, the condition that the sets are bounded is necessary.

Proposition 13 (Bruggink’s proposition). Let \(A \) and \(B \) be sets with \(A \subset B \). Then \(L(A) \subset L(B) \).