I. COURSE DESCRIPTION FROM CATALOG:
A theoretical study of vector spaces, bases and dimension, subspaces, linear transformations, dual
spaces, eigenvalues and eigenvectors, inner product spaces, spectral theory, duality, quadratic and
bilinear forms. Lec. 3-3. Credit 3-3.

II. PREREQUISITE(S):
MATH 4530 (5530): C or better in MATH 2010 and MATH 3400.
MATH 4540 (5540): C or better in MATH 4530 or 5530.

III. COURSE OBJECTIVE(S):
To introduce students to the theory of linear operators on (mostly) finite dimensional real and
complex vector spaces.

IV. TOPICS TO BE COVERED:

MATH 4530:

Chapter 4: Vector Spaces – Definition – Linear combinations, spanning sets – Subspaces – Linear
spans, Row space of a matrix – Linear dependence and independence – Basis and dimension – Rank of a
matrix – Sums and direct sums -- Coordinates

Chapter 5: Linear Mappings – Definition – Kernel and image of linear mapping – Singular and
nonsingular linear mappings – Isomorphisms – Operations with linear mappings – Algebra of linear
operators

Chapter 6: Linear Mappings and Matrices – Matrix representation of a linear operator – Change of
basis – Similarity – Matrices and general linear mappings

Chapter 7: Inner Product Spaces, Orthogonality – Definition – Examples of inner product spaces –
Cauchy-Schwarz inequality – Applications – Orthogonality – Orthogonal sets and bases – Gram-Schmidt
orthogonalization process – Orthogonal and positive definite matrices – Complex inner product spaces –
Normed vector spaces

Chapter 8: Determinants – Definition – Properties – Minors and cofactors – Laplace expansion –
Applications – Submatrices – Block matrices and determinants – Determinants and volume – Determinant
of a linear operator – Multilinearity and determinants

MATH 4540:

Chapter 9: Diagonalization: Eigenvalues and Eigenvectors – Polynomials of matrices – Characteristic
polynomial and Cayley-Hamilton Theorem – Diagonalization, eigenvalues and eigenvectors,

Students with a disability requiring accommodations should contact the Office of Disability Services (ODS).
An Accommodation Request (AR) should be completed as soon as possible, preferably by the end of the first
week of the course. The ODS is located in the Roaden University Center, Room 112; phone 372-6119.

Last Revised: 08/25/10
Students with a disability requiring accommodations should contact the Office of Disability Services (ODS).

An Accommodation Request (AR) should be completed as soon as possible, preferably by the end of the first week of the course. The ODS is located in the Roaden University Center, Room 112; phone 372-6119.


Chapter 11: Linear Functionals and the Dual Space – Linear functionals and the dual space – Dual basis – Second dual space – Annihilators – Transpose of a linear operator

Chapter 12: Bilinear, Quadratic, and Hermitian Forms – Bilinear forms and matrices – Alternating bilinear forms – Symmetric bilinear forms and quadratic forms – Real symmetric bilinear forms and Law of Inertia – Hermitian forms

Chapter 13: Linear Operators on Inner Product Spaces – Adjoint operators – Special linear operators – Self-adjoint operators – Orthogonal and unitary operators – Orthogonal and unitary matrices – Change of orthonormal basis – Positive definite and positive operators – Diagonalization and canonical forms in inner product spaces – Spectral Theorem

V. ADDITIONAL INFORMATION:

Graduate credit is earned on the basis of additional work that can be required by the instructor per 2005-2006 TTU Graduate Bulletin, page 38.

VI. POSSIBLE TEXTS AND REFERENCES:

- *Schaum’s Outline of Linear Algebra*, 4th edition, Lipschutz
- *Linear Algebra with Applications*, J.T. Scheick
- *Linear Algebra Done Right*, 2nd Edition by Axler
- *Advanced Linear Algebra*, 2nd edition, by Roman

VII. ANY TECHNOLOGY THAT MAY BE USED: