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In this chapter, we introduce some concepts for analyzing proofs, including 

various structures, and for analyzing undergraduate and beginning graduate mathematics 

students’ proving abilities.  We then discuss how the coordination of these two analyses 

might be used to improve students’ ability to construct proofs.   

For this purpose, we need a richer framework for keeping track of students’ 

progress than the everyday one.  We need to know more than that a particular student 

can, or cannot, prove theorems by induction or contradiction or can, or cannot, prove 

certain theorems in beginning set theory or analysis.  It will be more useful to describe a 

student's work in terms of a finer-grained framework including various smaller abilities 

that contribute to proving and that may be learned in differing ways and at differing 

periods of a student’s development.   

Developing a fine-grained framework for analyzing students’ abilities is not an 

especially novel idea.  In working with higher primary and secondary students, Gutiérrez 

and Jaime (1998) developed a fine-grained framework of reasoning processes in order to 

more accurately and easily assess student van Hiele levels.   

For proof construction, there are already a number of abilities suitable for keeping 

track of students’progress.  For example, in comparing undergraduates who had 

                                                           
1  
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completed a course in abstract algebra with doctoral students in abstract algebra, Weber 

(2001) found the doctoral students more able to use strategic knowledge.  When asked if 

two specific groups, such as � and =, are isomorphic, the undergraduates first looked to 

see if the groups had the same cardinality; after which they attempted unsuccessfully to 

construct an isomorphism between them, whereas the doctoral students considered 

properties preserved by isomorphism (Weber & Alcock, 2004), strategically a better 

starting point.        

The ability to use strategic information is about the proving processes of 

individual students.  But it is also useful to consider the product of such processes -- the 

proofs themselves -- because differing kinds of, and aspects of, proofs can correspond to 

various abilities needed to produce them.  We begin by analyzing various structures of 

proofs.   

In Section 1, we discuss three different structures of proofs, illustrated through a 

single real analysis proof that, under the right circumstances, advanced undergraduate or 

beginning graduate students might construct.  In Section 2, we present a similar analysis 

of a simpler proof -- one that mid-level undergraduates might construct.  After that, in 

Section 3, we make three informal observations about proofs, proving, and the teaching 

of proofs.  Then, in Section 4, we initiate a discussion of proving abilities, and in Section 

5, we turn to how all of this might be used in teaching. 

1.  Three structures of proofs 

Structures of proofs have been discussed before.  Leron (1983) suggests 

presenting a proof (for example, in a lecture) in a “top down” way, first describing the 

main ideas before filling in the details.  The structure followed in such a presentation is 
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reminiscent of what we will call the hierarchical structure of a proof, except that Leron is 

not concerned with characterizing the proof itself, but rather with providing a kind of 

advance organizer for its presentation.   

Konior (1993) is also concerned with a hierarchical structure of proofs, but he 

focuses on segmentation, that is, “separation of the whole [mathematical] text into a few 

parts  ...  in order to reflect the logical structure of the proof and facilitate the 

reconstruction of the whole proof.”  He discusses delimiters, such as words and 

paragraph breaks that indicate beginnings and endings of proof segments (e.g., 

subproofs).  We see this as an interesting approach, one important to students’ 

understandings of how proofs are written, but an investigation of delimiters is beyond the 

scope of this chapter. 

We discuss: (1) a hierarchical structure in which we attend to subproofs and 

subconstructions (such as finding the δ  in an ε δ−  real analysis proof, provided this 

requires more than one or two steps); (2) a construction path, that is, a linear path 

describing one ordering of the steps2 through which a proof could have been constructed 

by an idealized prover, who never erred or followed false leads and who wrote each step 

as soon as possible; and (3) a division of proofs into what we call the formal-rhetorical 

part and the problem-centered part.  For any given proof, these three structures can be 

combined and reduced to a single three-dimensional diagram that qualitatively reveals the 

proof’s complexity.  That complexity, in turn, can provide one indication of the proof’s 

difficulty, and knowledge of a proof’s difficulty can be an elusive, but important, tool in 

teaching.   

                                                           
2We speak of steps, or sentences, rather than statements, because proofs can contain sentences that are 
neither true nor false, but instead give instructions to the reader, such as “Let x  be a number.”    
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Of course, a particular theorem can often be proved in several ways.  However, 

there are not likely to be very many such ways (except for relatively minor details) for the 

theorems most advanced undergraduate and beginning graduate students are asked to 

prove.  There are also several ways one might break up longer, compound sentences into 

smaller ones and this will occasionally be called for, especially in determining a 

construction path through a proof.  Indeed, there may be points in a construction path 

where several essentially equivalent choices of direction are possible.  None of this 

variability should remove the usefulness of the qualitative judgments of difficulty arising 

from the analysis. 

Next these three structures and the resulting three-dimensional diagram will be 

presented and illustrated by analyzing a proof3 of a single theorem:  f+g is continuous at 

a point, provided f and g are. 

 
1.1  The hierarchy and construction path of an idealized prover 
 

First a proof of the above theorem is presented.  Then that proof is analyzed and 

built up hierarchically, attending to subproofs and subconstructions.  Simultaneously, we 

build a construction path giving the order in which the sentences (or subsentences) could 

have been written by an idealized prover.  For reference, and to facilitate the analysis, 

individual sentences of the proof have been numbered in bold brackets (e.g., [1], [2]) in 

their order in the proof.  (The sentence labeled [12, 13, 14, 15] is further broken down 

into four subsentences, one for each statement of equality or inequality.)  

                                                           
3 Since we will be discussing student proving and proofs, we have chosen a statement of the theorem and 
one proof that some might not regard as the “best.” 
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Proof.  [1] Let a  be a number and f  and g  be functions continuous at a .  [2] 

Let ε  be a number > 0.  [3] Note that 2
ε  > 0.  [4]  Now because f  is continuous at a , 

there is a  1δ > 0 such that for any 1x , if  1 1| |x a δ− < , then 1| ( ) ( ) | 2f x f a ε− < .  [5] Also 

because g  is continuous at a , there is a 2δ  > 0 such that for any 2x , if  2 2| |x a δ− < , then 

2| ( ) ( ) | 2g x g a ε− < .  [6] Let 1 2min( , )δ δ δ= .  [7] Note that 0δ > .   

[8] Let x  be a number.  [9] Suppose that | |x a δ− < .  [10] Then 1| |x a δ− < , so 

| ( ) ( ) | 2f x f a ε− < .  [11] Also 2| |x a δ− < , so | ( ) ( ) | 2g x g a ε− < .  [12, 13, 14, 15]  Now 

| ( ) ( ) ( ( ) ( )) |f x g x f a g a+ − +  = | ( ( ) ( )) ( ( ) ( )) |f x f a g x g a− + − ≤  

| ( ( ) ( )) | | ( ( ) ( )) |f x f a g x g a− + − < 2 2
ε ε+  = ε .  [16]  Thus 

| ( ) ( ) ( ( ) ( )) |f x g x f a g a+ − +  < ε .  [17] Therefore f g+  is continuous at a .  QED. 
 

 The first step of the construction path, which will appear as [H1] for “hidden,” is 

not in the proof or its hierarchical structure.  It is obtained by “clarifying” the statement 

of the theorem, that is, by rewriting the statement in a more formal way, explicitly 

mentioning variables and quantifiers and using standard logical connectives.  This 

clarification yields the statement:  For all real-valued functions f , all real-valued 

functions g , and all real numbers a , if f is continuous at a  and  g  is continuous at a , 

then f g+  is continuous at a . 

 This version of the statement of the theorem exposes its logical structure.  It is 

essential to understand this logical structure in order to be sure the proof proves this 

theorem, as opposed to some other theorem.  The logical structure, independent of the 

meaning of  “function,” “+,” and “continuous,” yields the first and last sentences of the 

proof.  Together they form what we have called a proof framework4 (Selden & Selden, 

                                                           
4 Proof frameworks can be independent of the meanings of certain content words.  Selden and Selden 
(1995, p. 130) illustrated this with a proof framework for a theorem about semigroups that can also serve as 
a proof framework for a theorem about real intervals.  This was accomplished by  replacing the words 
“semigroup” with “set of numbers,” “group” with “interval,” and “a subgroup of” with “a subinterval of” 
and retaining the usual meaning of the other words. 
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1995).  The resulting (partial) construction path of our idealized prover is now [H1], [1], 

[17], … and the resulting (partial) hierarchical structure is shown in Figure 1. 

Proof:    [1] Let a  be a number and f  and g  be functions continuous at a .   

                                              . . .  
[17] Therefore f g+  is continuous at a .  QED. 

Figure 1. The top level of the hierarchical structure  

Next we clarify line [17] by applying a definition of continuous to f g+  at the 

number a .  This clarification yields a new statement, [H2], that needs a subproof:  For 

every number 0ε > , there is a 0δ > , so that for every number x , if | |x a δ− <  then 

| ( ) ( ) ( ( ) ( )) |f x g x f a g a ε+ − + < .  Writing a proof framework for this subproof yields the 

(partial) construction path  [H1], [1], [17], [H2], [2], [7], [8], [9], [16], …  and the 

resulting (partial) hierarchical structure is shown in Figure 2.  

Proof:    [1] Let a  be a number and f  and g  be functions continuous at a .   

[2] Let ε  be a number > 0.  Let δ =  … 
[7] Note that 0δ > .  [8] Let x  be a number.  [9] Suppose that | |x a δ− < . 

                                         …    

[16]  Thus | ( ) ( ) ( ( ) ( )) |f x g x f a g a+ − +  < ε . 

 [17] Therefore f g+  is continuous at a .  QED. 

Figure 2.  Adding the second level of the hierarchical structure   

 Next we add in the construction of the δ and finish the proof, yielding the 

hierarchical structure in Figure 3.   
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Proof:    [1] Let a  be a number and f  and g  be functions continuous at a .   

[2] Let ε  be a number > 0.   

[3] Note that 2
ε  > 0.  [4]  Now because f  is continuous at a , there is a  

1δ > 0 such that for any 1x , if  1 1| |x a δ− < , then 1| ( ) ( ) | 2f x f a ε− < .  [5] 

Also because g  is continuous at a , there is a 2δ  > 0 such that for any 2x , if  

2 2| |x a δ− < , then 2| ( ) ( ) | 2g x g a ε− < .  [6] Let 1 2min( , )δ δ δ= .   
[7] Note that 0δ > .  [8] Let x  be a number.  [9] Suppose that | |x a δ− < .   

[10] Then 1| |x a δ− < , so | ( ) ( ) | 2f x f a ε− < .  [11] Also 2| |x a δ− < , so 

| ( ) ( ) | 2g x g a ε− < .  [12, 13, 14, 15]  Now | ( ) ( ) ( ( ) ( )) |f x g x f a g a+ − +  = 

| ( ( ) ( )) ( ( ) ( )) |f x f a g x g a− + − ≤  | ( ( ) ( )) | | ( ( ) ( )) |f x f a g x g a− + − < 2 2
ε ε+  

= ε .  [16]  Thus | ( ) ( ) ( ( ) ( )) |f x g x f a g a+ − +  < ε .   
 [17] Therefore f g+  is continuous at a .  QED. 

Figure 3.  Adding the third level of the hierarchical structure and finishing the proof 

 In Figure 3, we first added lines [3] – [6] of the construction path and then added 

lines [10] – [15] of the construction path.  The first addition was treated as a new level in 

the hierarchical structure, but the second was not.  This is because lines [3] – [6] can 

stand alone as the construction of δ , but lines [10] – [15] cannot stand alone as a 

subproof.  Rather, they form a part of [2] – [16], the proof of [H2].   

The construction path of our idealized prover is now:  [H1], [1], [17], [H2], [2], 

[7], [8], [9], [16], [3], [4], [5], [6], [10], [11], [12], [13], [14], [15]. 

 Although the linear and hierarchical structures illustrated above can contribute to 

observing student abilities, one might also ask:  Do undergraduate or graduate students 

just starting to construct proofs even tacitly understand these structures?  And does this 

matter?  Perhaps a hint at an answer can be obtained from considering two incidents.  

First, when the first author was a young mathematician, a colleague gave an amusing 
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account of Professor M, one of his respected graduate teachers.  He said M was known 

among the graduate students for being so brilliant that when he proved a theorem he sat 

down at his desk and wrote the statement of the theorem and the first line of its proof.  

Then, its second line.  He continued in this fashion until he reached the last line of the 

proof, wrote QED, and never looked at the proof again.  But why was this tale amusing?  

Perhaps it was because the audience of mathematicians knew from personal experience 

that mathematicians do not construct original proofs errorlessly or linearly from the top 

down.  Of course, unlike our idealized prover, most mathematicians probably do not 

actually write later lines of a proof, or subproof, well before earlier ones.  They may not 

even consciously focus on a specific goal or conclusion.  However, we suggest that 

mathematicians do have, and need, easy conscious access to information about where 

they are trying to go in a proof or subproof.  William James (1890) might well have 

viewed information available in this way as part of the fringe of consciousness5 which he 

saw as very important, perhaps because it is instrumental in determining one’s future 

focus.   

 The second, more recent, incident concerns a chance discussion of the above 

theorem, its proof, and the above construction path and hierarchical structure with a 

graduate student in mathematics education.  The student was surprised that constructing 

proofs might involve the kind of structures illustrated above, rather than progressing 

linearly from top down as one might write a letter.  It turned out that this graduate student 

had studied only a little advanced mathematics and much or all of that had been presented 

                                                           
5 One can think of consciousness at any particular moment as consisting of focus and fringe, rather like 
vision consists of central and peripheral vision.  This sensory phenomenon i.e., the separation of sensory 
processing into small high resolution and large low resolution parts, is fairly common in animals; in 
addition to vision in humans, a variety of bat has it for hearing and a variety of mole has it for touch. 
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in the traditional definition-theorem-proof style.  The proofs had also been presented in 

the traditional way from top to bottom, just as one might read them from a textbook. 

 These two incidents suggest that at least a tacit understanding of the above proof 

structures matters and that, early in their exposure to advanced mathematics, some 

students do not grasp much about them.  Such students are likely to have a view of proof 

construction that will prevent them from succeeding.  We wonder how many students 

start avoiding further mathematics courses and eventually abandon hopes of a 

mathematical career, as a result of such an unfortunate view.  

1.2 The formal-rhetorical and problem-centered parts of a proof 

Notice that writing steps  [H1], [1], [17], [H2], [2], [7], [8], [9], [16]  in the 

construction path of our idealized prover (Fig. 2) calls on an understanding of the logical 

structures of the theorem to be proved and of the definition of continuous at a point (as 

applied to f g+ ).  This is made clear in the rather formal statements [H1] and [H2].  In 

addition, one needs to know, and to act on, how parts of a statement relate to parts of its 

proof; we call knowledge of this kind behavioral knowledge6 because a tendency to 

behave or act is a part of it.  It is closely related to “knowing-to-act in the moment” 

(Mason & Spence, 1999), as well as to the ideas of  “concepts-in-action” and “theorems-

in-action” (Vergnaud, 1982).  For example, if a formal version of a theorem started, “For 

all real numbers x ,” then in a direct proof of it one might start by “introducing” the 

variable x , with a statement like “Let x  be a real number.”  Although for some authors of 

proofs, this statement may be left understood instead of made explicit, especially when x  

                                                           
6 Behavioral knowledge should not be confused with behaviorism, the idea that physically observable, and 
perhaps measurable, behavior should be the only basis for a scientific treatment of psychology.  Taking a 
behaviorist view would prevent most of the study of the mind, and hence, much current research in 
mathematics education.   
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appears in the statement of the theorem.  Furthermore, such an x  is usually said to be 

“fixed, but arbitrary” and does not “vary.”   

Quite a lot of such behavioral knowledge is required in constructing proofs.  

While it is not so important that a student be able to articulate such behavioral 

knowledge, it is important that he/she tend to act on it by constructing the next portion of 

a proof, for example, through writing, speech, or inner speech.  Although behavioral 

knowledge neither implies, nor is implied by, the corresponding procedural (knowing 

how, without necessarily acting) or conceptual knowledge (knowing why), these may 

also be useful. 

For a student with a reasonable repertoire of proof-related behavioral knowledge, 

writing the steps in Figure 2 can be quite straightforward.  Such writing can be viewed as 

invoking a schema, much like an expert solves a high school algebra equation.  It does 

not depend on a deep understanding of, or intuition about, the concepts involved or on 

genuine problem solving in the sense of Schoenfeld (1985, p. 74).  We call this part of the 

proof the formal-rhetorical part and contrast it with the remainder of the construction 

path of our idealized prover, [3], [4], [5], [6], [10], [11], [12], [13], [14], [15] (Figure 3), 

that we call the problem-centered part.  This problem-centered part of a proof does 

involve problem solving, although it might be useful to emphasize that a problem can be 

viewed as a matter of degree, and speak of degrees of non-routineness (Selden, Selden, 

Hauk, & Mason, 2000, pp. 148-149).  The steps in the problem-centered part may call on 

conceptual knowledge, mathematical intuition, and the ability to bring to mind the “right” 

resources at the “right time.” 
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Constructing the formal-rhetorical parts of proofs seems to call on a different kind 

of knowledge than constructing the problem-centered parts of proofs.  Helping students 

acquire these kinds of knowledge probably involves different kinds, or aspects, of 

teaching, even though these might be blended into a single course and taught by a single 

teacher.  Such a blending of teaching seems especially appropriate for learning to 

construct proofs because the two parts of a proof interact.  Indeed, there are theorems for 

which constructing the formal-rhetorical part of a proof can be very helpful in revealing 

the “real problem” to be solved in the rest of the proof.  Our sample theorem (Section 

1.1) is such a theorem.  Since it is about continuous functions, one might expect some 

kind of visual-spatial intuition about functions would be useful for constructing a proof.  

However, the formal-rhetorical part (Fig. 2) reveals that the problem is to find a δ  that 

will yield the inequality | ( ) ( ) ( ( ) ( )) |f x g x f a g a+ − +  < ε  in step [16] .  The solution 

does not arise in any obvious way from intuition about functions.  Instead, it involves use 

of 2
ε  in the definition of continuity for each of f  and g , a choice of δ  as the smaller 

of the resulting two 'sδ , application of the triangle inequality, and some algebraic 

rewriting. 

In the construction path of our sample proof (Section 1.1), as in many short 

proofs, the entire formal-rhetorical part of the proof comes first, followed by the 

problem-centered part.  However, in longer proofs, each subproof may have its own 

formal-rhetorical part and subsequent problem centered part, and the order of subproofs 

within a construction path can vary.  
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1.3 A three-dimensional diagram of complexity 

We will use the above three structures to build a three-dimensional diagram, or 

model, of our sample proof (Section 1.1) that will reveal its complexity in a qualitative 

way (see Figure 4).  We see complexity as being a contributor to difficulty, and 

judgments of difficulty as being useful in teaching.  We expect such diagrams to be 

useful in making rough estimates of the difficulty of constructing proofs. 

Figure 4.  The diagram for the first sample proof 

In such diagrams, a proof will be represented by a (possibly branching) rectilinear 

line through a rectangular solid of several levels, like a layer cake.  The line (and proof) 

starts at the top back and ends at the top front of the diagram.  The line drops down a 

level to represent a subproof or subconstruction.  Nodes on the line represent steps in the 

order they occur in the proof (i.e., [1], [2], [3], …), and proofs involving cases can be 
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represented by having the line divide into several “parallel” branches where case 

arguments occur.  The construction path will be represented by a curved dotted line from 

node to node that contains occasional “hidden” nodes off the rectilinear path.  The nodes 

of the problem-centered part of the proof will be indicated by heavier type.  This is 

illustrated in Figure 4 for the sample theorem analyzed in Sections 1.1 and 1.2.   

2.  A second simpler sample proof  

In this section we will analyze the structure of a second simpler sample proof, that 

of the theorem:  If f and g are functions from A to A and f og is one-to-one, the g is one-

to-one.  This theorem is more suitable for an undergraduate transition-to-proof course, 

while the previous theorem might be better for more advanced students. 

The proof with its steps numbered and divided into its hierarchical levels is given 

in Figure 5.  

Proof:  [1]  Let f  and g  be functions from A  to A .  [2] Suppose f go  
is one-to-one.   
[3]  Let x  and  y  be in A .  [4]  Suppose ( ) ( )g x g y= .   
[5]  Then ( ( )) ( ( ))f g x f g y= ,  [6] i.e., ( )( ) ( )( )f g x f g y=o o . 
[7]  But f go  is one-to-one.  [8]  So x y= . 

[9]  Therefore g is one-to-one.  QED. 
Figure 5.  The hierarchical structure of the second sample proof 

We will include a clarification, [H1], of the statement of the theorem, although it consists 

only of adding “For all f  and g ” at the beginning.  If-then theorems involving variables, 

but not quantifiers, invariably are meant to be universally quantified.  Also, in order to go 

beyond the first level proof framework to construct the subproof, one needs a clear 

definition of g is one-to-one.  Here is such a definition, which we call [H2]:  For all x  

and  y  in A , if  ( ) ( )g x g y=  then x y= .  The construction path then becomes:  [H1], 

[1], [2], [9], [H2], [3], [4], [8], [5], [6], [7].  (One also needs to know the meaning of  
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f go , which allows transforming [5] into [6].)  The problem-centered part of the proof is 

then just [5], [6], [7] and Figure 6 gives the three-dimensional diagram of the proof. 

 

Figure 6.  The diagram for the second sample proof. 

We now turn to the way proofs are currently often taught and bring up three 

informal observations. 

3.  Informal observations 

3.1  The genre of proof 

When students first start constructing their own proofs, they may inquire:  What is 

a proof?  They are occasionally told just to write a convincing argument.  However, 

proofs are not just convincing, deductive arguments, they are also texts composed in a 

special genre.  If beginning students are unaware of the need to write in this genre when 

asked to write “easy” proofs, they may suffer from what might be called the “obviousness 

obstacle.”   

For example, Moore (1994, pp. 258-259) reports that when one student in a 

transition-to-proof course was asked on a test to prove:  If A  and B  are sets satisfying 
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A B A∩ = , then A B B∪ = , she drew a Venn diagram with one circle, labeled A , 

contained in a larger circle, labeled B , and gave an intuitive argument based on her 

“understanding of set equality, subset, intersection, and union” using informal language, 

rather than a “proof based only on definitions, axioms, previously proved results, and 

rules of inference.”  According to the professor, she had not learned “the language and 

culture of how we write these things down.”  When asked what was wrong with her 

proof, the student said “I didn’t explain it well enough.”  Without understanding that 

there is a genre of proof, such obvious theorems may be very difficult for students.   

However, students who see themselves as learning to write in a special genre will 

have something positive to do, and hence, be less frustrated.  This seems to be so, even if 

no detailed description of the genre of proof has been given, and the students must learn 

by trial and error or as apprentices.  Indeed, it is unlikely that a very useful description of 

the genre could currently be given because none seems to have been developed yet. 

We have been collecting commonalities that can distinguish proof from other 

forms of deductive argument, for example, arguments that occur within lawyers’ 

speeches to juries, political treatises, or advertising.  We will mention just one here, 

namely, that mathematicians, in research papers and reference books, tend not to restate 

previously articulated definitions within proofs.  For example, the definition of compact 

is unlikely to be found in a proof that compact Hausdorff implies normal.  This is not to 

say that a definition is never stated within a proof, especially if it is of interest principally 

in that proof.   

So far, the characteristics of the genre of proof appear to be part of the rather 

sparse style in which proofs are often written. 



 16

3.2 Convince yourself 

Students are sometimes encouraged to prove theorems by first convincing 

themselves intuitively, then making the argument more and more precise, eventually 

arriving at a proof.  This is sometimes helpful, but there are theorems that for most 

students cannot be proved in this way, and those who insist on basing their work on 

intuition cannot prove such theorems.  Our first sample theorem (Section 1.1) is such a 

theorem.  However, for contrast, we will discuss the proof of another theorem that can be 

obtained by a refinement of intuition.     

 The theorem is:  For all real-valued functions of a real variable, if f  is 

continuous at a , and g is continuous at ( )f a , then g fo is continuous at a .  At first 

glance, this theorem seems to be rather like the theorem about the sum of continuous 

functions whose proof was discussed in Section 1.1.  However, one might develop some 

visual-spatial intuition about it by examining a sketch (Figure 7). 

 

Figure 7.  A representational sketch of g fo  

 Drawing a representation like that in Figure 7 might well be within the grasp of an 

advanced undergraduate student who started with the intuitive view that continuous at a  
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means “points close to a , map close to ( )f a .”  This representation would suggest that 

the theorem is true, and extending the idea of closeness to an ε δ−  argument would lead 

to a proof. 

3.3 Logic 

In the United States, most undergraduates, who receive any significant explicit 

instruction in how to write proofs, are provided it in one mid-level transition-to-proof 

course.  Typically, such courses include logic and a little about such topics as sets, 

equivalence relations, and functions, as well as some especially accessible mathematics 

to provide theorems to prove.  The logic is likely to consist of an abstract, symbolic, 

decontextualized treatment of propositional and some predicate calculus, including truth 

tables and the validity of arguments.  This is usually taught early in the course, largely 

outside of the context of proofs, presumably because logic is considered prerequisite to 

understanding proofs.   

 Although some parts of logic, such as understanding how to negate a statement, 

are certainly important for constructing some proofs, we doubt that formal logic often 

plays a large role in the proofs beginning students typically construct.  This somewhat 

counterintuitive view is supported by an analysis of student-generated proofs from a 

transition-to-proof course at a large Southwestern university.  The course was similar to 

that described above, except that most of the lectures occurred in its first half and the 

second half was devoted to having groups of 3 or 4 students prove theorems in class.  

Most of the 30 students were mathematics or mathematics education majors and the 

teacher provided occasional advice to the groups as they attempted to construct proofs.  

Although the course was not intended to be the basis of a study, all of the 62 correct 
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student-generated proofs were preserved and later analyzed for a master’s thesis (Baker, 

2001).  These proofs consisted of 926 lines of text whose analysis included noting uses of 

logic mentioned in the teacher’s lecture notes or in the textbook (Velleman, 1994).  Logic 

was used in just 29 lines. The remaining lines invoked definitions and subject matter 

knowledge or consisted of advance organizers, assertions of hypotheses or conclusions, 

and statements of whether the proof was direct, by contradiction, or by cases.   

We will also examine our first sample proof (Section 1.1) for uses of the kind of 

logic often taught in transition-to-proof courses.  In writing this proof, we doubt that a 

student would call on much formal logic.  However, we can find three places where a 

valid logical argument, together with information from outside the proof, could have been 

used.  These occur in deducing step [3] from [2]; step [7] from parts of [4], [5], and [6]; 

and the premise of [10] from [9] (and similarly, the premise of [11] from [9]).   

We will illustrate how deducing step [7] from parts of [4], [5], and [6] can be 

viewed as the result of the valid logical argument: (P∧Q)→R,  P,  Q,  ∴ R  First take 

(P∧Q)→R to be an instance of a statement from outside the proof, namely,  For all real 

numbers a  and b , if 0a > and 0b > , then min( , ) 0a b > .  If one then interprets P as 

1 0δ >  (from [4]) and Q as 2 0δ >  (from [5]), this statement becomes:  If 1 0δ >  and 

2 0δ > , then 1 2min( , ) 0δ δ > , where R is interpreted as 1 2min( , ) 0δ δ > .  Finally, invoking 

the valid logical argument (P∧Q)→R,  P,  Q,  ∴ R and identifying δ  with 1 2min( , )δ δ  

(from [6]), one gets 0δ > , which is [7]. 

 We believe that few, if any, students would consciously employ such 

cumbersome arguments, that needlessly overburden working memory.  Thus, from a 

practical perspective, our sample proof (Section 1.1) does not call on the kind of logic 
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normally taught.  Because there are many such direct proofs that call only a little on 

logic, it seems that logic is not prerequisite to understanding proofs and it might be 

possible and helpful to teach logic in the context of proofs, explicitly discussing it mainly 

as it comes up in proofs that students are constructing.   

Instead of [7] being the result of a valid logical argument, we see it as the result of 

an inference generating schema that accepts both conscious and unconscious inputs, such 

as parts of [4], [5], and [6] and additional information, but that is invoked outside of 

consciousness.  Such a schema would not be under conscious control so might best be 

developed through experiences and reflections on experiences.7  This supports our 

previous suggestion that logic meant to support proofs might best be taught in the context 

of its use in constructing proofs. 

4. Coordinating Aspects of Proofs with Students’ Abilities  

 Returning to the idea of developing a richer framework for keeping track of 

students’ progress, we will discuss some proving abilities that a student might have or 

that a proof might call for.  It is the coordination of these two – what a student might be 

able to do, or not do, and what a proof might call for – that we suggest may facilitate 

teaching proving, mainly through students’ construction of proofs, rather than in some 

more teacher-centered way such as lecturing.  Much of what we will mention may well 

be familiar to those who have helped numerous students construct their own proofs.  

Also, our suggestions are not meant to be in any sense complete. 

4.1 Kinds of proofs 

                                                           
7 The development (i.e., construction) of knowledge through experience and reflections on experience is 
consistent with a constructivist viewpoint.   
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 Authors of transition-to-proof textbooks typically distinguish direct proofs, proofs 

by contradiction, proofs by mathematical induction, proofs by cases, and perhaps, 

existence and uniqueness proofs because students need to be aware that a particular 

theorem might be proved more easily, or more appropriately, using a specific one of 

these.  However, for guiding students’ progress, such distinctions are not fine enough.  

For example, a particular student might be able to construct a number of direct proofs, 

but not the kind found in Section 1.1.  This might be due to its complex structure and the 

number of quantifiers involved, and knowing this would allow a teacher to guide that 

student’s current work or to provide later theorems of similar complexity.   

 For another example, we turn to proofs by contradiction.  A student might be able 

to construct several such proofs, but not a proof of:  There is at most one identity element 

in a semigroup.  This theorem is amenable to a very short proof by contradiction.  

However, perhaps the student needs to know the meaning of “at most one,” in particular, 

that its negation is “there are (at least) two.” 

4.2  Formal-rhetorical versus problem-centered reasoning 

 In Section 1.2, we distinguished between the formal-rhetorical and problem-

centered parts of a proof and suggested that writing these two parts calls on different 

kinds of knowledge, and hence, on different kinds of teaching.  We will call the abilities 

to write these two parts, formal-rhetorical reasoning and problem-centered reasoning, 

and apply these ideas to the kinds of exploration preceding and surrounding proofs, as 

well as to writing proofs. 

 Here is an example of the kind of problem-centered reasoning that can precede a 

proof.  Two students with fairly strong upper-division undergraduate mathematics 
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backgrounds were jointly attempting to prove:  If the number of elements in a set is n , 

then the number of its subsets is 2n , after failing to do so individually.  They had been 

advised:  Don’t  forget to count the empty set, ∅ , and the whole set as subsets.  For 

example the subsets of { },a b  are ∅ , { }a , { }b , and  { },a b .  Together, they first 

considered { , , }a b c and wrote { }c , { , }a c ,{ , }b c , and { , , }a b c .  Next they 

wrote{ , , , }a b c d .  When asked about this, they indicated that they had “added” c  to each 

of the subsets of { },a b to generate the four additional subsets of { , , }a b c .  They were 

about to “add” d  to each of the subsets of { , , }a b c , but were puzzled about how to 

construct a proof.  Based on their earlier inability to make progress individually, the 

teacher offered a stronger than normal intervention, “You can get from 2 to 3, and you 

can get from 3 to 4.  What does that make you think of?”  They replied, “Induction,” 

something they had not previously thought of .  Despite appropriate exploration, these 

students could benefit from an opportunity to think of using induction on the proof of a 

subsequent theorem -- a point we will return to in Section 5.  

4.3 Comparing the difficulty of proofs 

For an individual, a major determiner of the difficulty of constructing proofs 

seems to be the nature of his/her own knowledge and habits of mind, and this will be 

discussed in Section 4.6.  However, in the context of a course in which students prove all, 

or most, of the theorems, one can often see that one proof (or theorem) is more difficult 

than another by observing that only a few students can construct it, while many students 

can construct other proofs.  This suggests that there are characteristics intrinsic to proofs 

of theorems that make some more difficult than others, at least with respect to rough 

judgments of difficulty.  Certainly, we have found a need to make such judgments 
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especially in teaching Moore Method courses,8 because we prefer to ask a student to 

prove a theorem that will be challenging, but not so challenging that he/she fails to do so.  

Returning to our suggestion that (rough) judgments of the relative difficulties of 

proofs can sometimes be made independently of specific individuals, we compare our 

second sample proof with our first.  As indicated by their diagrams, the complexity of the 

second proof (Fig. 6) seems less than that of the first (Fig. 4).  Also, while the problem-

centered part of the second proof consists of just three consecutive steps, the problem-

centered part of the first proof consists of two separate sections, [3], [4], [5], [6] and [10], 

[11], [12], [13], [14], [15], each of which depends on the other.  Finally, one might easily 

believe the first sample proof could be developed from some kind of visual-spatial 

intuition about continuous functions, but this is unlikely.  Instead, the formal rhetorical 

part of the proof plays a large role, and a kind of technical-algebraic intuition, based on 

familiarity with previous definitions and theorems, is used.  Thus, it would seem clear 

that the second proof is less difficult than the first. 

4.4 Sets and functions 

 The language of sets and functions occurs widely in proofs, and undergraduate 

students are often introduced to it in a way that is somewhat abstract.  In keeping track of 

students’ progress, it can be helpful to consider whether they can use a concept in 

constructing proofs.  More important than being able to articulate definitions, students 

need to use them in proofs, that is, be able to carry out appropriate actions effortlessly in 

order to leave maximum cognitive resources for other parts of proofs, especially the 

problem-centered parts.  In doing this, students need what we are calling behavioral 

                                                           
8In such courses, students are typically given notes containing definitions and statements of theorems, or 
conjectures, and asked to prove them or to provide counterexamples. The teacher provides the structuring 
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knowledge, and we suspect this is learned as much from practice at constructing proofs as 

from abstract definitions.   

 For example, the definition of set equality is usually given as A B=  if and only if 

A B⊆  and B A⊆  , and students are told that this means A  and B  have the same 

elements.  But in constructing a proof that two sets are equal, it should come to mind 

easily that this involves showing that an arbitrary element of each set is in the other.  That 

is, normally two subproofs need to be constructed:  one beginning Suppose x A∈ K  and 

endingKThen x B∈ ; the other beginning Suppose x B∈ K  and ending K  Then x A∈ .  

Logically the definition involving two inclusions and the above “element-chasing” view 

of set equality are the same, but psychologically they are different.  In our experience, 

students often begin with the hypotheses and attempt to deduce A B= directly, without 

considering elements.   

Another example is provided by functions.  Students can have a reasonably good 

intuitive grasp of the meaning of one-to-one (1-1), but not know how to prove a function 

f is 1-1.  They may even realize that the definition involves an implication, namely, that 

( ) ( )f a f b= implies a b= , for all a  and b  in the domain.  However, in our experience, 

that does not mean they know where to begin a proof.  It may not be clear to them that 

they should normally begin the proof by almost automatically writing,  

Suppose ( ) ( )f a f b= K  for arbitrary elements a  and b  in the domain , and only then 

attempt to use the hypotheses to arrive at a b= .  Doing this can be taken as a good sign 

that a student knows how to prove functions are 1-1. 

4.5 Logic 

                                                                                                                                                                             
of the notes and critiques the students' efforts.  For more information, see Jones (1977) or Mahvier (1999). 
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 Logic does not occur within proofs as often as one might expect, as we pointed 

out in Section 3.3.  Furthermore, the logic used in proofs is mainly propositional calculus, 

and there is a tendency, where possible, to avoid variables and quantifiers.  That is, 

typically proofs do not contain arguments about all elements x , but instead are about a 

fixed, but arbitrary element x .  This cannot always be accomplished and our first sample 

proof (Section 1.1) is an exception in that 1x  and 2x  are universally quantified. 

 Where logic does occur within proofs, it plays an important role.  For example, 

students should effortlessly be able to convert not (p and q) into not p or not q; if p then q 

into (not p) or q; and if p then q into if not q then not p.  In addition, they should be able 

to draw inferences such as q, when given both  p and if p then q (modus ponens).  It 

seems to us that it would be useful to coordinate a student’s abilities to do these various 

logical activities with proofs that might call on them.   

In addition, there are logical and logic-like activities that connect what happens 

within a proof to the external context.  For example, before starting to write the proof of a 

theorem, a student should be able to unpack its logical structure, making variables and 

quantifiers explicit, and converting to standard logical connectives, such as if-then.  This 

can be difficult for many students (Selden & Selden, 1995).  After that, a student needs a 

suitable corresponding proof framework.  For direct proofs, we have illustrated this with 

our two sample proofs (Sections 1.1 and 2).  In order to handle proofs by contradiction, 

students also need to formulate negations of quantified statements.  They should be able 

to negate “for all x , ( )P x ” almost automatically to get “there is an x  such that not 

( )P x ,” etc.   
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Finally, a student must be able to connect a previous theorem, or definition, with a 

proof in progress.  This requires unpacking the theorem’s, or definition’s, logical 

structure, taking an instance thereof and adjusting the symbols to fit those used in the 

proof, seeing that the premises are satisfied within the proof, and writing the conclusion 

into the proof.  This can also be viewed either in terms of student abilities or as called for 

by various proofs.   

4.6 Problem-centered reasoning 

 Abilities in problem-centered reasoning are more difficult to separate out and 

observe than other previously discussed abilities (Sections 4.1 - 4.5).  However, problem-

centered reasoning plays a very large role – ultimately a dominant role – in constructing 

proofs, so it cannot be omitted.  As background, Schoenfeld’s (1985) analysis of problem 

solving should be very helpful, although the time scale of his observations is much less 

that that usually needed for constructing proofs.  This may make a considerable 

difference.  One of the points Schoenfeld makes in regard to control is that students often 

fail to monitor their work, continuing too long in an unpromising direction.  Surely this 

also happens in student proof construction.  However, another kind of control, 

persistence, can also be observed and can play a very positive role in both problem 

solving and proof construction.  Also, as mentioned in the introduction, strategic 

knowledge can be very useful (Weber, 2001; Weber & Alcock, 2004). 

 A major factor in proof construction is the mathematics a student knows, what 

Schoenfeld (1985) includes in resources.  The ability to bring such resources to mind in 

solving a specific problem or proving a specific theorem can be quite difficult for 

students (Selden, Selden, Hauk, & Mason, 2000).  Bringing to mind appropriate 
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knowledge depends on both the situation, for example, the comments of others, and the 

interconnected nature of a student’s own knowledge.  Perhaps the latter could be 

observed, or even enhanced, through working with what might be called a multi-concept 

map – an extension of the concept map idea to include more than one “core” concept, in 

particular, the main concepts needed in the proof at hand.  For example, in Section 4.2, 

we discussed two students who appeared to have some knowledge of proof by induction, 

but neither was able to bring it to mind until the teacher intervened.   

 Finally, intuition has a role in problem-centered reasoning and we suggest it 

would be useful to consider at least two kinds that we will call visual-spatial and 

technical-algebraic.  By visual-spatial we mean intuition based on pictures or diagrams 

that can be sketched or visualized.  These might be realistic, such a graph, or visually 

metaphorical.  Figure 7 is an example of a somewhat realistic sketch of the composition 

of two functions, although one that does not include their “shape,” in the way a Cartesian 

graph would.  Figure 7 might also be regarded as a visual metaphor for a similar situation 

in higher dimensions that are unavailable to the human senses.  In contrast, technical-

algebraic intuition depends on one’s familiarity with the interrelations within sets of 

definitions or theorems.  In Section 4.3, we suggested that part of the difficulty of our 

first sample proof (Section 1.1) was due to the probable expectation that visual-spatial 

intuition might be useful, but actually technical-algebraic intuition about manipulating 

inequalities was called for. 

5. Teaching 

 Teachers of upper division and graduate mathematics courses, such as real and 

complex analysis, often ask student to produce proofs as a major part of their 
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assessments, presumably because well-written proofs reflect a good understanding of 

course content.  Thus, a student with only modest proving ability is at a considerable 

disadvantage in demonstrating understanding.  We suspect that often such students do not 

continue their study of mathematics.  Secondary education mathematics majors, in 

particular, are likely to realize that proofs will be required in graduate school and that 

they have had less practice at constructing proofs than regular mathematics majors. 

 How do undergraduate students currently learn to construct proofs -- a topic that 

is mostly part of the implicit curriculum?  The only widely taught courses in the U.S. 

devoted explicitly to teaching undergraduate students how to prove theorems are mid-

level transition-to-proof courses.  Such courses typically include topics such as logic, 

sets, and functions -- information assumed to be a prerequisite for constructing proofs – 

and by necessity, these topics are taught in a somewhat abstract way, mainly outside the 

proving context.  Only after that, are applications to constructing proofs considered.  

Such teaching tends to yield conceptual knowledge about proving – knowledge that does 

not automatically convert to the corresponding behavioral knowledge required to actually 

construct proofs.  This suggests that many transition-to-proof courses are not as effective 

as they might be.  Also, it appears that most of the logic taught in such courses occurs 

only rarely in proofs (see Section 3.3).  Thus, it seems that students should be able to start 

proving theorems without previous instruction in logic or practice with sets and functions 

and develop knowledge of logic, sets, and functions through experience and mentoring 

during their attempts at proof construction.   

Students may also learn something of proof construction from lectures on 

mathematical content, such as real analysis or abstract algebra.  However, for teaching 
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proof construction, even well presented lectures may be ineffectual, because a teacher 

cannot know what features of proofs students are focusing on in class and probably does 

not know what kinds of proofs students have, or have not, already learned to construct.  

Take for example, Dr. T's teaching methods in real analysis, as described by Weber 

(2004).  Dr. T, known for very good teaching, first discussed the formal-rhetorical 

aspects of proving9 when presenting theorems about sets and functions.  Somewhat later 

when considering sequential limits, Dr. T concentrated on demonstrating how to 

manipulate absolute value expressions (to find N), apparently mistakenly assuming that 

the students had learned and could supply the required formal-rhetorical parts of such 

proofs.  Unfortunately, they could not.  

Homework and tests in courses like real and complex analysis can also provide 

opportunities to learn proof construction.  However, these too are likely to be ineffectual 

because often they do not focus directly on teaching how to construct proofs or do not 

include mentoring students’ work.  In summary, none of the current ways of teaching 

proof construction – transition-to-proof courses or lectures, homework, and tests in 

content courses – seems adequate.  Indeed, it appears that many beginning graduate 

students at U.S. universities could benefit from a course designed to improve their ability 

to construct proofs.   

What kind of course is likely to be reasonably effective in helping students 

improve their proof constructing abilities?  We suggest that a good way to teach such a 

course is from a set of notes containing definitions and statements of theorems to prove, 

but with little or no additional explanation.  Proofs, as well as examples and nonexamples 

of definitions, should be provided by the students themselves.  At least at first, the 

                                                           
9 Weber (2004) refers to Dr. T’s teaching at this point in the course as being in a logico-structural style. 
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students’ proof construction might best be done in class, so the teacher can provide 

adequate mentoring.  By this we do not mean providing many heavy-handed hints, but 

only enough intervention for a student to succeed reasonably often and with considerable 

effort.  Every intervention, in a sense, deprives a student of the opportunity to succeed 

without it.  Thus it is probably best if mentoring is not available during all, or even most, 

of a student’s proving of a particular theorem, and even that students have to compete for 

a teacher’s attention. 

The student proving and the mentoring are likely to occasionally refer to more 

general kinds of information, such as how to negate a universally quantified statement or 

how to prove a function is one-to-one.  When this occurs, a teacher might organize and 

extend such information and add it to a set of continuing supplementary notes, so that 

students can refer to them for future work.  Such supplementary notes should be 

especially useful because the information in them first arose in context in the form of 

behavioral knowledge (or the lack of it) and was only subsequently developed into 

conceptual knowledge, rather than the other way round.  The supplementary notes should 

probably be discussed in class only very briefly and when a student brings up a question 

about them. 

In the kind of course we are describing, students seem to do well in small groups.  

It may be that early on small group discussions alleviate concern over working in an 

unfamiliar problem-oriented situation.  Also, the need to convince one’s colleagues of 

one’s ideas may enhance (problem-solving) control (Section 4.6).   

In addition, where understanding previous mathematical content (for example, the 

definition of compactness in terms of coverings) or bringing it to mind are called for, 
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surely several students must have an advantage over one.  All of the above suggests that 

working in a small group raises the probability of a student’s successfully proving a 

theorem.  We see raising the probability of success as important because the literature has 

little prescriptive to say about teaching students the problem-centered part of proving, but 

our experience strongly suggests that success breeds success. 

There is another way to raise the probability of students proving a theorem that 

we call “long range priming” and will illustrate by referring to our first sample proof 

(Section 1.1).  It seems clear this is a difficult proof (Section 4.3) and depends on 

students thinking of using minimum to find δ  and the triangle inequality to complete the 

problem-centered part of the proof.  The proof might be rendered somewhat less difficult 

by inserting two earlier theorems in the notes, one requiring minimum and the other 

requiring the triangle inequality. 

The above illustration suggests the course notes should be written as the course 

progresses, so that the teacher knows which features of proof students are already 

familiar with and which kinds of proofs they have successfully constructed thus far.  The 

idea is to provide course notes having “just in time” challenges and information.   

Section 4 suggests an additional constraint on the course notes, namely, they 

should not be too narrow.  That is, before writing the notes, one might wish to establish 

priorities on which abilities to include.  This might even be done in a way that would 

ensure the supplemental notes included much of the background material in a transition-

to-proof course.  All of this suggests the notes may require considerable time to write and 

raises a question of practicality for most teachers. 
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Is such a course practical?  Can the notes be written in a reasonable length of time 

and can a reasonable number of students be mentored in class?  Our experience from 

transition-to-proof courses suggests that the mentoring would become difficult as the 

class size nears 35, even with groups of four.  However, a properly trained student 

assistant could no doubt be a great help with the mentoring.  For more advanced 

undergraduate or graduate students, the writing of notes appears to be manageable for a 

very small class with three groups of two students each.  This class size could probably 

be increased to three groups of three to four students. 

However, a tool could surely be built that would make writing such notes 

practical for a larger number of students.  It is much easier to select a theorem that 

requires particular proving abilities than it is to write one “on demand” for a particular 

student.  Thus, what is needed is a reference book, or database, containing branching 

sequences of definitions, theorems, and proofs, together with an analysis of which 

previous definitions and theorems, and which abilities, are used in each proof.  A teacher 

could then select a theorem that would “stretch” a particular ability, and working 

backwards, include any necessary definitions and theorems needed to join the desired 

theorem to the current notes.  Indeed it would probably be possible to have a computer 

program (controlled by the teacher) generate some of the notes as the course progressed. 
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