Function: Octonion:-oversion - display information about the current version of the 'Octonion' package

Calling Sequence:

oversion();

Parameters:

no parameters needed

Description:

- Procedure 'oversion' displays information about the current version of the 'Octonion' package.
- The 'Octonion' package must be loaded after the 'CLIFFORD' package has been loaded. Therefore, in order to avoid confusion with the procedure Clifford:-version, this procedure is called 'oversion'.
- To display 'CLIFFORD' and 'Octonion' environmental variables, use procedure Clifford:-CLIFFORD_ENV.
- To multiply octonionic matrices, see Clifford:-rmulm.

Examples:

```maple
> restart: with(Clifford): with(Octonion);
[Φ, associator, commutator, def_omultable, o_conjug, o_inv, omul, omultable, onorm, oversion, purevectorpart, realpart]
> version(); #current version of CLIFFORD

++++++++++++++++++++++
CLAFFORD - A Maple 12 Package for Clifford Algebras with "Bigebra"
(Version 12 with environmental variables given by CLIFFORD_ENV())
Last revised: December 20, 2009 (Source file: clifford_M12_12.mws)
Copyright 1995-2009 by Rafal Ablamowicz (*) and Bertfried Fauser ($) 

(*) Department of Mathematics, Box 5054
Tennessee Technological University, Cookeville, TN 38505
tel: USA (931) 372-3569, fax: USA (931) 372-6353
rablamowicz@tntech.edu
http://math.tntech.edu/rafal/

($) Universit"at Konstanz, Fachbereich Physik, Fach M678
78457 Konstanz, Germany
Bertfried.Fauser@uni-konstanz.de
http://kaluza.physik.uni-konstanz.de/~fauser/
```
If you are a Clifford algebra pro, assign 'true' to '_prolevel' and see how much faster your computations will be! But watch your syntax!

Use 'useproduct' to change value of _default_Clifford_product in Cl(B) from cmulRS when B is symbolic to cmulNUM when B is numeric. Type ?cmul for help.

Type CLIFFORD_ENV() to see current values of environmental variables.

+++++++++++++This is CLIFFORD version 12+++++++++++++

> oversion(); #current version of Octonion

+++

'Octonion' - A Maple 12 Package for Computations with Octonions (version 12)

Last revised: December 20, 2008

Copyright 1995-2009, by Rafal Ablamowicz, Tennessee Technological University

Department of Mathematics, Box 5054
Tennessee Technological University, Cookeville, TN 38505
phone: USA (931) 372-3569, fax: USA (931) 372-6353

e-mail: rablamowicz@tntech.edu
http://math.tntech.edu/rafal/

+++

See Also: omul

(c) Copyright 1995-2009, by Rafal Ablamowicz & Bertfried Fauser, all rights reserved.
Last revised: December 20, 2008/RA/BF
Function: Octonion:-setup - the initialization procedure for the package 'Octonion'

Calling Sequence:
none

Parameters:
none

Description:
• Procedure 'setup' is the initialization procedure for the 'Octonion' package. It is executed automatically when the package is loaded.

• At the time of loading, the following are defined:

- `&o` - infix form for omul, the octonionic multiplication
- _octbasis = [Id, e1, e2, e3, e4, e5, e6, e7] - standard octonion basis as Maple global variable in Cl(0,7)
- _pureoctbasis = [e1, e2, e3, e4, e5, e6, e7] - pure octonion basis as Maple global variable in Cl(0,7)
- _default_Fano_triples = [[1,3,7],[1,2,4],[1,5,6],[2,3,5],[2,6,7],[3,4,6],[4,5,7]] - default Fano triples that define octonionic multiplication
- _default_squares = [-Id, -Id, -Id, -Id, -Id, -Id, -Id] - default squares of the pure octonionic basis

• To see all environmental variables that are defined and used by 'CLIFFORD', use procedure Clifford:-CLIFFORD_ENV.

• All procedures and types in 'Octonion' are protected.

Examples:

```maple
> restart: with(Clifford): with(Octonion):
> CLIFFORD_ENV();

`>>> Global variables defined in Clifford:-setup are now available and have the
se values: <<<`
`************* Start *************`
dim_V = 9
_default_Clifford_product = Clifford:-cmulNUM
_prolevel = false
_shortcut_in_minimalideal = true
_shortcut_in_Kfield = true
_shortcut_in_spinorKbasis = true
_shortcut_in_spinorKrepr = true
_warnings_flag = true
_scalartypes = {`^`, RootOf, complex, indexed, numeric, constant, function, mat
hfunc, rational}
_quatbasis = [[Id, e3we2, e1we3, e2we1], `Maple has assigned qi:=-e2we3, qj:=e
1we3, qk:=-e1we2`)```
Cliplus has been loaded. Definitions for type/climon and type/clipolynom now in clude &C and &C[K]. Type ?cliprod for help.

`>>> Global variables defined in Cliplus:-setup are now available and have thes e values: <<<`

`>>> There are no new global variables or macros in GTP yet. <<<`

`>>> Global variables defined in Octonion:-setup are now available and have the se values: <<<`

See Also: `type/Fano_triples`, `omultable`, `omul`

(c) Copyright 1995-2009, by Rafal Ablamowicz & Bertfried Fauser, all rights reserved. Last revised: December 20, 2008/RA/BF
**Function:** Octonion:-associator - returns the associator value of three octonions, Octonion:-commutator - returns the commutator value of two octonions, Octonion:-Phi - associative 3-form of three octonions

**Calling Sequence:**

associator(p1,p2,p3);
commutator(p1,p2);
Phi(p1,p2,p3);

**Parameters:**

p1, p2, p3 - polynomials of type 'octonion'

**Description:**

- The associator of three octonions p1, p2, and p3 is defined as:
  \[
  \text{associator}(p1,p2,p3) = (p1 \&o p2) \&o p3 - p1 \&o (p2 \&o p3).
  \]

- The commutator of two octonions p1 and p2 is defined as:
  \[
  \text{commutator}(p1,p2) = p1 \&o p2 - p2 \&o p1.
  \]

- The associative 3-form Phi of three octonions is defined as:
  \[
  \text{Phi}(p1,p2,p3) = \frac{1}{2}\text{realpart}(p1 \&o (p2_{\bar{o}} \&o p3) - p3 \&o (p2_{\bar{o}} \&o p1))
  \]
  where \(p2_{\bar{o}} = o_{\text{conj}}(p2)\).

- For information about type 'octonion' see `type/octonion`.

**Examples:**

```plaintext
> restart: with(Clifford): with(Octonion);

[Φ, associator, commutator, def_omultable, o_conjug, oinv, omul, omultable, onorm, oversion, purevectorpart, realpart]

> p1 := 1-2*e1+e4+3*e6-e7; p2 := 2-e1+e3+2*e6-e7; p3 := 2*e2+e3+3*e5-e6;
p1 := 1 - 2 e1 + e4 + 3 e6 - e7
p2 := 2 - e1 + e3 + 2 e6 - e7
p3 := 2 e2 + e3 + 3 e5 - e6

> type(p1, octonion); type(p2, octonion); type(p3, octonion);
Cliplus has been loaded. Definitions for type/climon and type/clipolynom now in
include &C and &C[K]. Type ?cliprod for help.
```
Octonion multiplication is not associative:

\[
\texttt{associator(p1,p2,p3)};
\]

\[-8 \, e_1 - 2 \, e_2 + 20 \, e_3 + 14 \, e_4 - 6 \, e_5 - 2 \, e_6 + 24 \, e_7\]

However, when \(p_1, p_2,\) and \(p_3\) are considered as elements in the Clifford algebra \(\text{Cl}(0,7)\), which is associative, we get:

\[
\texttt{(p1 \&c p2) \&c p3 - p1 \&c (p2 \&c p3)};
\]

\[0\]

\[
\texttt{commutator(p1,p2)};
\]

\[2 \, e_1 - 4 \, e_2 + 2 \, e_3 + 6 \, e_4 + 4 \, e_5 - 2 \, e_6 - 4 \, e_7\]

\[
\texttt{Phi(p1,p2,p3)};
\]

\[4\]

See Also: [Clifford:-`&c`], [def_omultable], [omultable], [omul]
Function: Octonion:-associator - returns the associator value of three octonions,
Octonion:-commutator  - returns the commutator value of two octonions
Octonion:-Phi - associative 3-form of three octonions

Calling Sequence:
associator(p1,p2,p3);
commutator(p1,p2);
Phi(p1,p2,p3);

Parameters:
p1, p2, p3 - polynomials of type 'octonion'

Description:
• The associator of three octonions p1, p2, and p3 is defined as:
  \[ \text{associator}(p1,p2,p3) = (p1 \&o p2) \&o p3 - p1 \&o (p2 \&o p3). \]

• The commutator of two octonions p1 and p2 is defined as:
  \[ \text{commutator}(p1,p2) = p1 \&o p2 - p2 \&o p1. \]

• The associative 3-form Phi of three octonions is defined as:
  \[ \Phi(p1,p2,p3) = (1/2)\text{realpart}(p1 \&o (p2_{\text{bar}} \&o p3) - p3 \&o (p2_{\text{bar}} \&o p1)) \]
  where \( p2_{\text{bar}} = \text{o_conjug}(p2). \)

• For information about type 'octonion' see `type/octonion`.

Examples:
```maple
> restart:with(Clifford):with(Octonion);
Φ
associator commutator def_omultable o_conjug oinv omul omultable onorm
, , , , , , , ,
, ,
> p1:=1-2*e1+e4+3*e6-e7;p2:=2-e1+e3+2*e6-e7;p3:=2*e2+e3+3*e5-e6;
 p1 := 1 - 2 e1 + e4 + 3 e6 - e7
 p2 := 2 - e1 + e3 + 2 e6 - e7
 p3 := 2 e2 + e3 + 3 e5 - e6
> type(p1,octonion);type(p2,octonion);type(p3,octonion);
Clifplus has been loaded. Definitions for type/climon and type/clipolynom now in
clude &C and &C[K]. Type ?cliprod for help.
```
Octonion multiplication is not associative:
\[
\text{associator}(p1,p2,p3); \\
\quad -8\,e1 - 2\,e2 + 20\,e3 + 14\,e4 - 6\,e5 - 2\,e6 + 24\,e7
\]
However, when p1, p2, and p3 are considered as elements in the Clifford algebra Cl(0,7), which is associative, we get:
\[
(p1 \&c p2) \&c p3 - p1 \&c (p2 \&c p3);
\]
\[
\text{commutator}(p1,p2); \\
\quad 2\,e1 - 4\,e2 + 2\,e3 + 6\,e4 + 4\,e5 - 2\,e6 - 4\,e7
\]
\[
\Phi(p1,p2,p3); \\
\quad 4
\]

See Also: Clifford:-`&c`, def_omultable, omultable, omul

(c) Copyright 1995-2009, by Rafal Ablamowicz & Bertfried Fauser, all rights reserved.
Last revised: December 20, 2008/RA/BF
Function: Octonion:-def_omultable - define octonionic multiplication table

Calling Sequence:
def_omultable(F);

Parameters:
F - a list of type `Fano_triples`

Description:
- Procedure 'def_omultable' allows user to define an octonionic multiplication table which could be different than the default one.
- The default multiplication table is initialized at the time when the 'OCTONION' package is being loaded. It can also be re-defined by issuing the following command:

```
> def_omultable(_default_Fano_triples);
```

where _default_Fano_triples is a global list with default Fano triples. See `type/Fano_triples` for more information.
- Use omultable to display currently defined multiplication table.
- Use Clifford:-CLIFFORD_ENV to display current environmental variables used by 'CLIFFORD' and 'Octonion'.

Examples:
```
> restart:with(Clifford):with(Octonion);
[Φ, associator, commutator, def_omultable, o_conjug, oinv, omul, omultable, onorm, oversion, purevectorpart, realpart]

> omultable(); #default multiplication table

\[
\begin{bmatrix}
-ld & e4 & e7 & -e2 & e6 & -e5 & -e3 \\
-e4 & -ld & e5 & e1 & -e3 & e7 & -e6 \\
e7 & -e5 & -ld & e6 & e2 & -e4 & e1 \\
e2 & -e1 & -e6 & -ld & e7 & e3 & -e5 \\
e6 & e3 & -e2 & -e7 & -ld & e1 & e4 \\
e5 & e7 & e4 & -e3 & -e1 & -ld & e2 \\
e3 & e6 & -e1 & e5 & -e4 & e2 & -ld \\
\end{bmatrix}
\]

For example, we get the first row as follows:
```
> seq(e1 &o e||i,i=1..7);
-ld, e4, e7, -e2, e6, -e5, -e3
```

The second row we get as follows:
```
> seq(e2 &o e||i,i=1..7);
-e4, -ld, e5, e1, -e3, e7, -e6
```
and so on.

Multiplication table can be erased as follows:
```latex
\texttt{subsop(4=NULL, eval(omul)):
}\texttt{omultable();
Octonion multiplication table is not currently defined. Use \texttt{def\_omultable} to
define a new table.}
```

Finally, we re-initialize the table using the default Fano triples:
```latex
\texttt{\_default\_Fano\_triples;}
\texttt{[ [1, 3, 7], [1, 2, 4], [1, 5, 6], [2, 3, 5], [2, 6, 7], [3, 4, 6], [4, 5, 7]]}
\texttt{def\_omultable(\_default\_Fano\_triples);}
\texttt{omultable();
}\begin{bmatrix}
-l e4 \ e7 \ -e2 \ e6 \ -e5 \ -e3 \\
-e4 \ -l e5 \ e1 \ -e3 \ e7 \ -e6 \\
-e7 \ -e5 \ -l e6 \ e2 \ -e4 \ e1 \\
e2 \ -e1 \ -e6 \ -l e7 \ e3 \ -e5 \\
-e6 \ e3 \ -e2 \ -e7 \ -l e1 \ e4 \\
e5 \ -e7 \ e4 \ -e3 \ -e1 \ -l e2 \\
\text{e3} \ \text{e6} \ -\text{e1} \ \text{e5} \ -\text{e4} \ -\text{e2} \ -\text{l e1}
\end{bmatrix}
```

However, the following is another valid list of Fano triples:
```latex
\texttt{new\_Fano\_triples:=[[6, 2, 5], [6, 3, 4], [6, 7, 1], [2, 3, 7], [3, 1, 5], [2, 4, 1], [4, 5, 7]];}
\texttt{\text{new\_Fano\_triples} := [[6, 2, 5], [6, 3, 4], [6, 7, 1], [2, 3, 7], [3, 1, 5], [2, 4, 1], [4, 5, 7]]}
\texttt{type(new\_Fano\_triples,Fano\_triples);}
\text{true}
\texttt{def\_omultable(new\_Fano\_triples);}
\texttt{omultable();
}\begin{bmatrix}
l d \ e4 \ -e5 \ -e2 \ e3 \ e7 \ -e6 \\
-e4 \ -l e7 \ e1 \ e6 \ -e5 \ -e3 \\
e5 \ -e7 \ -l e6 \ -e1 \ -e4 \ e2 \\
e2 \ -e1 \ -e6 \ -l e7 \ e3 \ -e5 \\
e3 \ -e6 \ e1 \ -e7 \ -l e2 \ e4 \\
e7 \ e5 \ e4 \ -e3 \ -e2 \ -l e1 \\
e6 \ e3 \ -e2 \ e5 \ -e4 \ -e1 \ -l e1
\end{bmatrix}
```

which is a different multiplication table than before.
```latex
\texttt{>
}\texttt{>
}\texttt{>
}\texttt{>
}
```

\textbf{See Also:} \texttt{\text{'type/Fano_triples', omultable, omul}}

(c) Copyright 1995-2009, by Rafal Ablamowicz & Bertfried Fauser, all rights reserved.
Last revised: December 20, 2008/RA/BF
Function: Octonion:-`type/Fano_triples` - a list of lists used to define octonionic multiplication table

Calling Sequence:

type(F,Fano_triples);

Parameters:
F - a list of lists

Description:

• A list of lists F is of type 'Fano_triples' if:
 (1) the list F contains seven lists F1, F2, F3, F4, F5, F6, and F7;
 (2) each of the seven lists F1, ..., F7 contains three integers from the set \{1,2,3,4,5,6,7\};
 (3) each of the seven integers \{1,2,3,4,5,6,7\} appears in exactly three of the seven lists F1, ..., F7.

• A default list of Fano triples is stored in a global list `_default_Fano_triples`.

• A valid list of seven Fano triples may be used to label seven points and seven lines in the Fano plane \(F_2 \).

• The set of integers \{1,2,3,4,5,6,7\} is used because we use \{e1,e2,e3,e4,e5,e6,e7\} for the pure octonion basis.

• If \([i,j,k]\) is one of the seven valid Fano triples F1, ..., F7, then:
 (1) \(omul(e_i,e_j) = e_k, \ omul(e_j,e_k) = e_i, \ omul(e_k,e_i) = e_j \);
 (2) \(omul(e_j,e_i) = -e_k, \ omul(e_k,e_j) = -e_i, \ omul(e_i,e_k) = -e_j \);

• The default multiplication table is initialized at the time when the 'Octonion' package is being loaded. It can also be re-defined by issuing the following command:

\[> \text{def_omultable(_default_Fano_triples);} \]

where _default_Fano_triples is a global list with default Fano triples. See `type/Fano_triples` for more information.

• Use `omultable` to display currently defined multiplication table.

• See `omul` for octonionic multiplication.

• To display all environmental variables used by 'CLIFFORD' and 'Octonion' packages, use `Clifford:-CLIFFORD_ENV`.

Examples:

\[> \text{restart:with(Clifford):with(Octonion);} \]

[\(\Phi, \text{associator}, \text{commutator}, \text{def_omultable}, \text{o_conjug}, \text{oinv}, \text{omul}, \text{omultable}, \text{onorm}, \text{oversion}, \text{purevectorpart}, \text{realpart} \)]
For example, the first list implies the following about \(\{e_1, e_3, e_7\} \):

\[
\begin{align*}
\circmul(e_1, e_3) &= e_7 \\
\circmul(e_3, e_7) &= e_1 \\
\circmul(e_1, e_7) &= e_3
\end{align*}
\]

and

\[
\begin{align*}
\circmul(e_3, e_1) &= -e_7 \\
\circmul(e_7, e_3) &= -e_1 \\
\circmul(e_1, e_7) &= -e_3
\end{align*}
\]

and so on.

However, the following is another valid list of Fano triples:

\(\text{new_Fano_triples} := [[6, 2, 5], [6, 3, 4], [6, 7, 1], [2, 3, 7], [3, 1, 5], [2, 4, 1], [4, 5, 7]];\)

\(\text{type(new_Fano_triples, Fano_triples)};\)

\(\text{true}\)

while the following is not:

\(\text{another_Fano_triples} := [[4, 2, 5], [6, 3, 4], [6, 7, 1], [2, 3, 7], [3, 1, 5], [2, 4, 1], [4, 5, 7]];\)

\(\text{type(another_Fano_triples, Fano_triples)};\)

\(\text{false}\)

The reason is that '4' appears in four lists.

See Also: \texttt{def_omultable}, \texttt{omultable}, \texttt{omul}
Function: Octonion:-o_conjug - octonionic conjugation in the octonionic algebra

Calling Sequence:

\texttt{o_conjug(o)};

Parameters:

\(o \) - expression of the type 'octonion'

Description:

- Procedure \texttt{'o_conjug'} computes octonionic conjugation in the octonionic algebra:

\[
o_conjug(x_0 + x) = x_0 - x
\]

- where \(x_0 \) is a real number and \(x = x_1 e_1 + x_2 e_2 + x_3 e_3 + x_4 e_4 + x_5 e_5 + x_6 e_6 + x_7 e_7 \).

- Conjugation is an anti-automorphism of the octonionic algebra. This means that \(o_conjug(o_1 \& o_o_2) = o_conjug(o_2) \& o_conjug(o_1) \).

- For information about type 'octonion' see \texttt{`type/octonion'}.

Examples:

\begin{verbatim}
> restart:with(Clifford):with(Octonion):

 [\Phi, associator, commutator, def_omultable, o_conjug, oinv, omul, omultable, onorm,
 overversion, purevectorpart, realpart]

 > o1:=x0+add(x||i*e||i,i=1..7);
 \textbf{o1} := x_0 + x_1 e_1 + x_2 e_2 + x_3 e_3 + x_4 e_4 + x_5 e_5 + x_6 e_6 + x_7 e_7

 > o2:=y0+add(y||i*e||i,i=1..7);
 \textbf{o2} := y_0 + y_1 e_1 + y_2 e_2 + y_3 e_3 + y_4 e_4 + y_5 e_5 + y_6 e_6 + y_7 e_7

 > L:=o_conjug(omul(o1,o2));

 Cliplus has been loaded. Definitions for type/climon and type/clipolynom now in
 include &C and &C[K]. Type ?cliprod for help.

 > R:=omul(o_conjug(o2),o_conjug(o1));

 > simplify(L-R);

 0

 Any octonion \(o_1 \) times its conjugate is a scalar:

 > o1inv:=o_conjug(o1);
 \textbf{o1inv} := x_0 - x_1 e_1 - x_2 e_2 - x_3 e_3 - x_4 e_4 - x_5 e_5 - x_6 e_6 - x_7 e_7

 > o1 \& o o1inv;

 \(x_0^2 \text{Id} + x_1^2 \text{Id} + x_2^2 \text{Id} + x_3^2 \text{Id} + x_4^2 \text{Id} + x_5^2 \text{Id} + x_6^2 \text{Id} + x_7^2 \text{Id} \)

 > realpart(%);

 \(x_0^2 + x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2 + x_7^2 \)

 Since octonions are treated as paravectors in the Clifford algebra \(Cl(0,7) \), octonionic conjugate of
 any octonion can be obtained also by taking grade involution:
\end{verbatim}
However, grade involution in Cl(0,7) is not an antiautomorphism of Cl(0,7): it is an automorphism of Cl(0,7). Note: in the above output, the unit element in Cl(0,7) is denoted as 'Id'.

See Also: omul, oinv, Clifford:-q_conjug, Clifford:-conjugation, Clifford:-gradeinv, realpart
Function: Octonion:-`type/octonion` - type octonion

Calling Sequence:

\[\text{type(p,octonion);} \]

Parameters:

\(p \) - an expression of type 'algebraic'

Description:

- Any polynomial \(p \) expressible as follows

\[
 p = x_0 + x_1 e_1 + x_2 e_2 + x_3 e_3 + x_4 e_4 + x_5 e_5 + x_6 e_6 + x_7 e_7
\]

or

\[
 p = x_0 \text{Id} + x_1 e_1 + x_2 e_2 + x_3 e_3 + x_4 e_4 + x_5 e_5 + x_6 e_6 + x_7 e_7
\]

is of type 'octonion'.

- The unit element in the octonion algebra may be entered as 1 or as 'Id'. In some computations 'Id' will be returned.

- Use \texttt{omultable} to display currently defined multiplication table.

- See \texttt{omul} for octonionic multiplication.

Examples:

\[
\begin{align*}
\text{restart: with(Clifford): with(Octonion);} \\
\Phi, \text{ associator, commmutator, def_omultable, o_conjug, oinv, omul, omultable, onorm,} \\
\text{version, purevectorpart, realpart} \\
\text{p1:=1-2*e2+e4+e5+4*e6-e7;} \\
p1 := 1 - 2 e_2 + e_4 + e_5 + 4 e_6 - e_7 \\
\text{type(p1,octonion);} \\
\text{true} \\
\text{p2:=p1+e8;} \\
p2 := 1 - 2 e_2 + e_4 + e_5 + 4 e_6 - e_7 + e_8 \\
\text{type(p2,octonion);} \\
\text{false}
\end{align*}
\]

See Also: \texttt{def_omultable, omultable, omul}

(c) Copyright 1995-2009, by Rafal Ablamowicz & Bertfried Fauser, all rights reserved.
Last revised: December 20, 2008/RA/BF
Function: Octonion:-oinv - symbolic inverse in the octonionic division ring

Calling Sequence:

oinv(o);

Parameters:

o - expression of the type 'octonion'

Description:

- Procedure 'oinv' calculates a symbolic inverse of any non-zero octonion. Recall that octonions form a non-associative, non-commutative division ring.
- For information about type 'octonion' see type/octonion.
- Note that any of the following is an illegal entry: 1/e1, e1^(-1), etc.
- Recall that octonionic product can be computed with the procedure omul.

Examples:

```plaintext
> restart:with(Clifford):with(Octonion);

Φ, associator, commutator, def.omultable, o_conjug, oinv, omul, omultable, onorm,
ovation, purevectorpart, realpart

> o1:=1-2*e1+3*e3+e4-e6+e7;

   o1 := 1 - 2 e1 + 3 e3 + e4 - e6 + e7

> p:=e1+e2;pinv:=oinv(p);

   p := e1 + e2

   pinv := -\frac{e1}{2} - \frac{e2}{2}

> omul(p,pinv); #inverse of o1

   Id

> o1inv:=oinv(o1); #inverse of o1

   o1inv := \frac{1}{17} + \frac{2 e1}{17} - \frac{3 e3}{17} - \frac{e4}{17} + \frac{e6}{17} - \frac{e7}{17}

> omul(o1inv,o1); #checking that o1inv is the inverse of o1

   Id

> o2:=x0+add(x||i*e||i,i=1..7);

   o2 := x0 + x1 e1 + x2 e2 + x3 e3 + x4 e4 + x5 e5 + x6 e6 + x7 e7

> o2inv:=oinv(o2); #symbolic inverse of o2

   o2inv := \frac{x0}{x4^2 + x5^2 + x3^2 + x6^2 + x2^2 + x1^2 + x7^2 + x0^2}
```


> omul(o2, o2inv);

\[\text{Id} \]

See Also: \texttt{onorm, omul, def_omultable, omultable}

(c) Copyright 1995-2009, by Rafal Ablamowicz & Bertfried Fauser, all rights reserved.
Last revised: December 20, 2008/RA/BF
Function: Octonion:-omul - octonion product in the octonion non-associative division ring and its infix form '&o'

Calling Sequence:

omul(o1,o2,...on);

Parameters:

o1, o2, ..., on - expressions of the type 'octonion'

Description:

• Procedure 'omul' and its infix form '&o' give the octonion product in the non-associative division ring of octonions.

• Octonions are considered here as para-vectors in the Clifford algebra Cl(0,7), that is, any expression of the form

\[x_0 + x_1 e_1 + x_2 e_2 + x_3 e_3 + x_4 e_4 + x_5 e_5 + x_6 e_6 + x_7 e_7 \]

where \(x_0, x_1, ..., x_7 \) are real numbers, is of type 'octonion'. See `type/octonion` for more information.

• The basis elements for the octonion algebra are \{1,e1,e2,e3,e4,e5,e6,e7\} (sometimes 'Id' is returned instead of '1'). They are collected in a global variable '_octbasis'. The basis elements \{e1,e2,e3,e4,e5,e6,e7\} give pure octonions and are collected in a global variable _pureoctbasis.

• To display environmental variables from CLIFFORD and Octonion, use Clifford:-CLIFFORD_ENV.

• The infix form is given by '&o', e.g., omul(e1,e2) = e1 &o e2. Remember that 'omul' is non-associative!

• Octonionic inverse is computed with oinv.

• To speed up computations, set the global variable _prolevel to 'true'. To find out more, see help page on Clifford:-cliparse.

• To see the default multiplication table try omultable and to define your own octonionic multiplication see def_omultable.

Examples:

```maple
restart:with(Clifford):with(Octonion);
[Φ, associator, commutator, def_omultable, o_conjug, oinv, omul, omultable, onorm, oversion, purevectorpart, realpart]

The following is the default octonionic multiplication table:
>`omultable();
```
\[
\begin{bmatrix}
-ld & e4 & e7 & -e2 & e6 & -e5 & -e3 \\
-e4 & -ld & e5 & e1 & -e3 & e7 & -e6 \\
-e7 & -e5 & -ld & e6 & e2 & -e4 & e1 \\
e2 & -e1 & -e6 & -ld & e7 & e3 & -e5 \\
e6 & e3 & -e2 & -e7 & -ld & e1 & e4 \\
e5 & -e7 & e4 & -e3 & -e1 & -ld & e2 \\
e3 & e6 & -e1 & e5 & -e4 & -e2 & -ld
\end{bmatrix}
\]

\[
> o1:=1-2*e1+3*e3+e4-e6+e7;
\]

\[
o1 := 1 - 2 e1 + 3 e3 + e4 - e6 + e7
\]

\[
> o2:=2+e3-4*e6+e7;
\]

\[
o2 := 2 + e3 - 4 e6 + e7
\]

\[
> \text{type}(o1, \text{octonion}), \text{type}(o2, \text{octonion});
\]

Cliplus has been loaded. Definitions for \text{type/climon} and \text{type/clipolynom} now in clude \&C and \&C[K]. Type ?cliprod for help.

\[
\text{true, true}
\]

\[
> \text{omul}(o1, o2);
\]

\[
-6 ld - 2 e1 + 5 e3 + 13 e4 - 7 e6 + e7 - 9 e5 + 3 e2
\]

Octonionic multiplication is not commutative:

\[
> o1 \& o2;
\]

\[
-6 ld - 2 e1 + 5 e3 + 13 e4 - 7 e6 + e7 - 9 e5 + 3 e2
\]

\[
> o2 \& o1;
\]

\[
-6 ld + 9 e3 - 5 e6 + 5 e7 - 6 e1 + 9 e5 - 9 e4 - 3 e2
\]

We show now that it is not associative either:

\[
> (e1 \& e2) \& e3;
\]

\[
e6
\]

\[
> e1 \& (e2 \& e3);
\]

\[
e6
\]

\[
> o3:=2-3*e1+e5-e7;
\]

\[
o3 := 2 - 3 e1 + e5 - e7
\]

\[
> (o1 \& o2) \& o3;
\]

\[
-8 ld + 16 e1 - 21 e2 + 2 e3 + 43 e4 + 10 e5 - 40 e6 + 36 e7
\]

\[
> o1 \& (o2 \& o3);
\]

\[
-8 ld + 6 e1 + 47 e2 + 8 e3 + 5 e4 - 18 e5 - 38 e6 + 38 e7
\]

The difference between \(o1 \& o2) \& o3 and \(o1 \& (o2 \& o3)\) is measured by an associator, or see \text{associator}:

\[
> \text{associator}(o1, o2, o3);
\]

\[
10 e1 - 68 e2 - 6 e3 + 38 e4 + 28 e5 - 2 e6 - 2 e7
\]

The difference between \(o1 \& o2) and \(o2 \& o1\) is measured by a commutator, or see \text{commutator}:

\[
> \text{commutator}(o1, o2);
\]

\[
4 e1 - 4 e3 + 22 e4 - 2 e6 - 4 e7 - 18 e5 + 6 e2
\]

\[
>
\]
See Also: Clifford:-version, oinv, def_omultable, omultable

(c) Copyright 1995-2009, by Rafal Ablamowicz & Bertfried Fauser, all rights reserved.
Last revised: December 20, 2008/RA/BF
Function: Octonion:-omultable - display current octonionic multiplication table

Calling Sequence:

omultable();

Parameters:

no parameters needed

Description:

- Procedure 'omultable' displays current octonionic multiplication table or returns a message informing that the table has not been defined.

- When the Octonion package is loaded, the default multiplication table is initialized. This default table is defined by a default list of Fano triples (see `type/Fano_triples`) which are stored in a global variable _default_Fano_triples.

- To see environmental variables used in 'CLIFFORD' and 'Octonion', see procedure Clifford:-CLIFFORD_ENV.

- The multiplication table is displayed in a form of a 7 by 7 matrix such that its (i,j)-entry, i,j=1,...,7, gives the octonion product of ei and ej, that is, the product ei &o ej.

- Recall that the elements of the pure octonion basis \{e1,e2,e3,e4,e5,e6,e7\} are stored in a global list _pureoctbasis.

- To speed up computations, procedure 'omul', which gives the octonionic product (see omul) has a remember table. This remember table can be erased using the command subsop(4=NULL,eval(omul)).

- Octonionic multiplication can be re-defined by the user using the procedure def_omultable.

Examples:

```maple
> restart: with(Clifford):with(Octonion);
[Φ, associator, commutator, def_omultable, o_conjug, oinv, omul, omultable, onorm, oversion, purevectorpart, realpart]

> oversion();

'Octonion' - A Maple 12 Package for Computations with Octonions (version 12)
Last revised: December 20, 2008
Copyright 1995-2009, by Rafal Ablamowicz, Tennessee Technological University
Department of Mathematics, Box 5054
Tennessee Technological University, Cookeville, TN 38505
phone: USA (931) 372-3569, fax: USA (931) 372-6353
```
For example, we get the first row as follows:

\[\text{seq(e1 } \&\& \text{e}_i, i=1..7); \]
\[-e_4, e_7, -e_2, e_6, -e_5, e_3, e_1 \]

The second row we get as follows:

\[\text{seq(e2 } \&\& \text{e}_i, i=1..7); \]
\[-e_4, -e_5, -e_1, -e_3, e_7, e_6, e_2 \]

and so on.

Multiplication table can be erased as follows:

\[\text{subsop(4=\text{NULL,eval(omul)):} \]
\[\text{omultable();} \]
Octonion multiplication table is not currently defined. Use 'def_omultable' to define a new table.

Finally, we re-initialize the table using the default Fano triples:

\[_\text{default_Fano_triples}; \]
\[[[1, 3, 7], [1, 2, 4], [1, 5, 6], [2, 3, 5], [2, 6, 7], [3, 4, 6], [4, 5, 7]] \]
\[\text{def_omultable(_default_Fano_triples);} \]
\[\text{omultable();} \]

\[-e_4, e_7, -e_2, e_6, -e_5, e_3, e_1 \]

Thus, the table has been re-initialized.

See Also: `type/Fano_triples`, `def_omultable`, `omul`
Function: \texttt{Octonion:-onorm} - norm of an octonion

Calling Sequence:
\texttt{onorm(o)};

Parameters:
\texttt{o} - expression of the type 'octonion'

Description:
- Procedure 'onorm' calculates norm of an octonion \texttt{o}. It is defined as follows:

\[
onorm(o) = \sqrt{o \& o_{\text{conjug}}(o)} = \sqrt{x_0^2 + x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2 + x_7^2}
\]
where \(o = x_0 + x_1 e_1 + x_2 e_2 + x_3 e_3 + x_4 e_4 + x_5 e_5 + x_6 e_6 + x_7 e_7 \), and \(x_0, x_1, ..., x_7 \), are real parameters.
- Recall that octonionic product can be computed with the procedure \texttt{omul} or with its infix form '\&o'.
- For information about type 'octonion' see \texttt{`type/octonion'\}.

Examples:

```maple
> restart: with(Clifford): with(Octonion):
> o1:=1-2*e1+3*e3+e4-e6+e7;
> onorm(o1);  # norm of o1
```

Theorem [The Eight-Square Identity]

The norm in the octonion algebra is a ring homomorphism.

```maple
> o1:=x0+x1*e1+x2*e2+x3*e3+x4*e4+x5*e5+x6*e6+x7*e7;
> o2:=y0+y1*e1+y2*e2+y3*e3+y4*e4+y5*e5+y6*e6+y7*e7;
```
We will now verify that

\[\text{onorm}(o1 \& o \circ o2) = \text{onorm}(o1) \times \text{onorm}(o2). \]

\[
> \text{factor(\text{onorm(o1 & o o2));} \\
\sqrt{(y7^2 + y1^2 + y3^2 + y5^2 + y0^2 + y2^2 + y6^2) (x5^2 + x6^2 + x0^2 + x1^2 + x3^2 + x4^2 + x7^2 + x2^2)} \\
> \text{onorm(o1)*onorm(o2);} \\
\sqrt{x5^2 + x6^2 + x0^2 + x1^2 + x3^2 + x4^2 + x7^2 + x2^2} \sqrt{y7^2 + y1^2 + y3^2 + y5^2 + y0^2 + y2^2 + y4^2 + y6^2}
\]

See Also: \text{oversion, omul, oinv, def_omultable, omultable}

(c) Copyright 1995-2009, by Rafal Ablamowicz & Bertfried Fauser, all rights reserved.
Last revised: December 20, 2008/RA/BF
Function: Octonion:-associator - returns the associator value of three octonions.
Octonion:-commutator - returns the commutator value of two octonions
Octonion:-Phi - associative 3-form of three octonions

Calling Sequence:
associator(p1,p2,p3);
commutator(p1,p2);
Phi(p1,p2,p3);

Parameters:
p1, p2, p3 - polynomials of type 'octonion'

Description:
- The associator of three octonions p1, p2, and p3 is defined as:
 \[\text{associator}(p1,p2,p3) = (p1 \&o p2) \&o p3 - p1 \&o (p2 \&o p3). \]
- The commutator of two octonions p1 and p2 is defined as:
 \[\text{commutator}(p1,p2) = p1 \&o p2 - p2 \&o p1. \]
- The associative 3-form Phi of three octonions is defined as:
 \[\Phi(p1,p2,p3) = \frac{1}{2}\text{realpart}(p1 \&o (p2_{\bar{\text{ }}\text{bar}} \&o p3) - p3 \&o (p2_{\bar{\text{ }}\text{bar}} \&o p1)) \]

 where \(p2_{\bar{\text{ }}\text{bar}} = o_{\text{conjug}}(p2). \)

- For information about type 'octonion' see `type/octonion`.

Examples:
```plaintext
> restart:with(Clifford):with(Octonion);

Φ
associator commutator def_omultable o_conjug oinv omul omultable onorm
, , , , , , , , 
, , 
Φ
> p1:=1-2*e1+e4+3*e6-e7; p2:=2-e1+e3+2*e6-e7; p3:=2*e2+e3+3*e5-e6;

  p1 := 1 - 2 e1 + e4 + 3 e6 - e7
  p2 := 2 - e1 + e3 + 2 e6 - e7
  p3 := 2 e2 + e3 + 3 e5 - e6

> type(p1,octonion); type(p2,octonion); type(p3,octonion);

Clifplus has been loaded. Definitions for type/climon and type/clipolynom now in
clude &C and &C[K]. Type ?cliprod for help.
```
Octonion multiplication is not associative:

\[
\text{assoc}\text{a}\text{i}\text{t}\text{or}(p_1, p_2, p_3);
\]

\[
-2e_2 + 24e_7 - 2e_6 - 6e_5 + 14e_4 + 20e_3 - 8e_1
\]

However, when \(p_1, p_2, \) and \(p_3 \) are considered as elements in the Clifford algebra \(\text{Cl}(0,7) \), which is associative, we get:

\[
(p_1 \& c p_2) \& c p_3 - p_1 \& c (p_2 \& c p_3);
\]

\[
0
\]

\[
\text{commutator}(p_1, p_2);
\]

\[
-4e_2 - 4e_7 - 2e_6 + 4e_5 + 6e_4 + 2e_3 + 2e_1
\]

\[
\Phi(p_1, p_2, p_3);
\]

\[
4
\]

See Also: Clifford:-`&c`, def_omultable, omultable, omul

(c) Copyright 1995-2009, by Rafal Ablamowicz & Bertfried Fauser, all rights reserved.
Last revised: December 20, 2008/RA/BF
Function: Octonion:-realpart - returns real part of any octonion,
Octonion:-purevectorpart - returns pure vector part of any octonion

Calling Sequence:
realpart(p);
purevectorpart(p);

Parameters:
p - a polynomial of type 'octonion'

Description:
• Any octonion p is expressible as
 \[p = x_0 + x_1 e_1 + x_2 e_2 + x_3 e_3 + x_4 e_4 + x_5 e_5 + x_6 e_6 + x_7 e_7 \]
 or \[p = x_0 \cdot 1 + x_1 e_1 + x_2 e_2 + x_3 e_3 + x_4 e_4 + x_5 e_5 + x_6 e_6 + x_7 e_7 \]
 where \(x_0, x_1, \ldots, x_7 \) are real parameters.
• For information about type 'octonion' see `type/octonion`.
• The part \(x_1 e_1 + x_2 e_2 + x_3 e_3 + x_4 e_4 + x_5 e_5 + x_6 e_6 + x_7 e_7 \) of p is referred to as the 'pure vector part' of p.
• The coefficient \(x_0 \) is referred to as the 'real part' of p.
• Procedure 'realpart' is similar to Clifford:-scalarpart.

Examples:
\[
\begin{align*}
> \text{restart: with(Clifford): with(Octonion);} \\
> p1 := 1 - 2 e_1 + e_4 + 3 e_6 - e_7; \\
> \text{type(p1, octonion);} \\
> \text{realpart(p1);} \\
> \text{scalarpart(p1);} \\
> \text{purevectorpart(p1);} \\
\end{align*}
\]
See Also: def_omultable, omultable, omul

(c) Copyright 1995-2009, by Rafal Ablamowicz & Bertfried Fauser, all rights reserved. Last revised: December 20, 2008/RA/BF
Function: Octonion:-realpart - returns real part of any octonion,
Octonion:-purevectorpart - returns pure vector part of any octonion

Calling Sequence:

realpart(p);
purevectorpart(p);

Parameters:
p - a polynomial of type 'octonion'

Description:

- Any octonion \(p \) is expressible as

\[
p = x_0 + x_1 * e_1 + x_2 * e_2 + x_3 * e_3 + x_4 * e_4 + x_5 * e_5 + x_6 * e_6 + x_7 * e_7 \quad \text{or} \quad p = x_0 * \text{Id} + x_1 * e_1 + x_2 * e_2 + x_3 * e_3 + x_4 * e_4 + x_5 * e_5 + x_6 * e_6 + x_7 * e_7
\]

where \(x_0, x_1, \ldots, x_7 \), are real parameters.

- For information about type 'octonion' see `type/octonion`.

- The part \(x_1 * e_1 + x_2 * e_2 + x_3 * e_3 + x_4 * e_4 + x_5 * e_5 + x_6 * e_6 + x_7 * e_7 \) of \(p \) is referred to as the 'pure vector part' of \(p \).

- The coefficient \(x_0 \) is referred to as the 'real part' of \(p \).

- Procedure 'realpart' is similar to Clifford:-scalarpart.

Examples:

```maple
restart:with(Clifford):with(Octonion);

Φ
associator commutator def_omultable o_conjug oinv omul omultable onorm,

ovation, purevectorpart, realpart

> p1:=1-2*e1+e4+3*e6-e7;
p1 := 1 - 2 e1 + e4 + 3 e6 - e7

> type(p1,octonion);
true

> realpart(p1);
1

> scalarpart(p1);
1

> purevectorpart(p1);
-2 e1 + e4 + 3 e6 - e7
```