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Abstract

Salingaros (1981, 1982, 1984) defined five families N2k−1, N2k , Ω2k−1, Ω2k

and Sk of finite 2-groups related to Clifford algebras C`p,q. For each
k ≥ 1, the group N2k−1 is a central product (D8)◦k of k copies of the
dihedral group D8 and the group N2k is a central product (D8)◦(k−1) ◦ Q8,
where Q8 is the quaternion group. Both groups N2k−1 and N2k are
extra-special.

Ω2k−1
∼= N2k−1 ◦ (C2 × C2), Ω2k

∼= N2k ◦ (C2 × C2), and
Sk
∼= N2k−1 ◦ C4

∼= N2k ◦ C4, where C2 and C4 are cyclic groups of order 2
and 4, respectively (cf. Brown (2015)).

Chernov (2001) observed that a Clifford algebra C`p,q could be obtained
as a homomorphic image of a group algebra R[G ] should there exist a
suitable finite 2-group with generators fulfilling certain relations. As an
example, he showed that C`0,2

∼= R[Q8]/J while C`1,1
∼= R[D8]/J , where

in each case J is an ideal in the respective group algebra generated by
1 + τ for some central group element τ of order 2.
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Abstract - continued

Walley (2017) showed that also C`2,0
∼= R[D8]/J and that

eight-dimensional Clifford algebras can be represented as follows:

C`0,3
∼= R[Ω2]/J , C`2,1

∼= R[Ω1]/J , C`1,2
∼= C`3,0

∼= R[S1]/J .

In each case one needs to carefully define a surjective map from the group
algebra to the Clifford algebra with kernel equal to the ideal (1 + τ).

One observes that for each n = p + q ≥ 0 the number of non-isomorphic
Salingaros groups of order 2n+1 equals the number of isomorphism classes
of Clifford algebras C`p,q of dimension 2n (see Periodicity of Eight table in
Lounesto (2001)).

The objective of this work is to prove the following theorem:

Main Theorem

Every Clifford algebra C`p,q is isomorphic to a quotient of a group algebra
R[G ], where G is one of Salingaros groups N2k−1, N2k , Ω2k−1, Ω2k or Sk of
order 2p+q+1, modulo an ideal J = (1 + τ) generated by 1 + τ for some central
element of order 2.
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Abstract - continued

For example, Salingaros groups N3 and N4 are sufficient to give two
isomorphism classes of sixteen-dimensional Clifford algebras, namely:

C`0,4
∼= C`1,3

∼= C`4,0
∼= R[N4]/J , C`2,2

∼= C`3,1
∼= R[N3]/J .

This approach to the Periodicity of Eight of Clifford algebras should allow
to apply the representation theory and characters of finite groups to
Clifford algebras.

For example, as a consequence of the well-known fact that up to an
isomorphism there are exactly two non-isomorphic non-Abelian groups of
order eight provides a group-theoretic explanation why there are exactly
two isomorphism classes of Clifford algebras of dimension four.

Keywords: 2-group, central product, Clifford algebra, extra-special group,
group algebra, Salingaros vee group
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Definition of a group algebra F[G ]

Definition 1

Let G be a finite group and let F be a field (usually R or C). Then the group
algebra F[G ] is the vector space

F[G ] =

∑
g∈G

λgg , λg ∈ F

 (1)

with multiplication defined as∑
g∈G

λgg

(∑
h∈G

µhh

)
=
∑

g,h∈G

λgµh(gh) =
∑
g∈G

∑
h∈G

(λhµh−1g )g (2)

where all λg , µh ∈ F. (James and Liebeck [11], Passman [16])

Definition 2

Let p be a prime. A group G is a p-group if every element in G is of order pk

for some k ≥ 1. So, any finite group G of order pn is a p-group.
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Two important groups Q8 and D8 of order 8

The quaternionic group Q8:

Q8 = 〈a, b | a4 = 1, a2 = b2, bab−1 = a−1〉 = {1, a, a2, a3, b, ab, a2b, a3b}

= 〈I , J, τ | τ 2 = 1, I 2 = J2 = τ, IJ = τJI 〉 (I = a, J = b, τ = a2)

so |a2| = 2, |a| = |a3| = |b| = |ab| = |a2b| = |a3b| = 4, hence its order
structure is [1, 1, 6], and Z(Q8) = {1, a2} ∼= C2. Here, τ = a2 ∈ Z(Q8).

The dihedral group D8 (the symmetry group of a square):

D8 = 〈a, b | a4 = b2 = 1, bab−1 = a−1〉 = {1, a, a2, a3, b, ab, a2b, a3b}

= 〈σ, τ | σ4 = τ 2 = 1, τστ−1 = σ−1〉 (τ = a, σ = b)

so |a2| = |b| = |ab| = |a2b| = |a3b| = 2, |a| = |a3| = 4, hence its order
structure is [1, 5, 2], and Z(D8) = {1, a2} ∼= C2. Here, τ = b, σ = a,
hence, σ2 = a2 ∈ Z(D8).
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Constructing H = C`0,2 as R[Q8]/J

Example 1

Define an algebra map ψ from the group algebra R[Q8]→ H = {1, i, j, ij}:

1 7→ 1, τ 7→ −1, I 7→ i, J 7→ j, (3)

Then, J = kerψ = (1 + τ) for a central involution τ = a2 in Q8, so dimR J = 4
and ψ is surjective. Let π : R[Q8]→ R[Q8]/J be the natural map u 7→ u + J .
There exists an isomorphism ϕ : R[Q8]/J → H such that ϕ ◦ π = ψ and

π(I 2) = I 2 + J = τ + J and ϕ(π(I 2)) = ψ(τ) = −1 = (ψ(I ))2 = i2,

π(J2) = J2 + J = τ + J and ϕ(π(J2)) = ψ(τ) = −1 = (ψ(J))2 = j2,

π(IJ + JI ) = IJ + JI + J = (1 + τ)JI + J = J and

ϕ(π(IJ + JI )) = ψ(0) = 0 = ψ(I )ψ(J) + ψ(J)ψ(I ) = ij + ji.

Thus, R[Q8]/J ∼= ψ(R[Q8]) = H ∼= C`0,2 provided the central involution τ is
mapped into −1. (see also Chernov [5])
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Constructing C`1,1 as R[D8]/J
Example 2

Define an algebra map ψ from the group algebra R[D8]→ C`1,1 such that:

1 7→ 1, τ 7→ e1, σ 7→ e2, (4)

where C`1,1 = spanR{1, e1, e2, e1e2}. Then, kerψ = (1 + σ2) where σ2 is a
central involution a2 in D8. Let J = (1 + σ2). Thus, dimR J = 4 and ψ is
surjective. Let π : R[D8]→ R[D8]/J be the natural map u 7→ u + J . There
exists an isomorphism ϕ : R[D8]/J → C`1,1 such that ϕ ◦ π = ψ and

π(τ 2) = τ 2 + J = 1 + J and ϕ(π(τ 2)) = ψ(1) = ψ(τ 2) = (e1)2 = 1,

π(σ2) = σ2 + J and ϕ(π(σ2)) = ψ(σ2) = ψ(−1) = (e2)2 = −1,

π(τσ + στ) = τσ + στ + J = στ(1 + σ2) + J = J and

ϕ(π(τσ + στ) = ψ(τ)ψ(σ) + ψ(σ)ψ(τ) = ψ(0) = e1e2 + e2e1 = 0.

Thus, R[D8]/J ∼= C`1,1 provided the central involution σ2 is mapped into −1.
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Constructing C`2,0 as R[D8]/J
Example 3

Define an algebra map ψ from the group algebra R[D8]→ C`2,0 such that:

1 7→ 1, τ 7→ e1, σ 7→ e1e2, (5)

where C`2,0 = spanR{1, e1, e2, e1e2}. Then, kerψ = (1 + σ2) where σ2 is a
central involution a2 in D8. Let J = (1 + σ2). Thus, dimR J = 4 and ψ is
surjective. Let π : R[D8]→ R[D8]/J be the natural map u 7→ u + J . There
exists an isomorphism ϕ : R[D8]/J → C`2,0 such that ϕ ◦ π = ψ and

π(τ 2) = τ 2 + J = 1 + J and ϕ(π(τ 2)) = ψ(τ 2) = ψ(1) = (e1)2 = 1,

π(σ2) = σ2 + J so ϕ(π(σ2)) = ψ(−1) = (e1e2)2 = −1, so (e2)2 = 1 since

ϕ(π(τσ + στ)) = ϕ(τσ + στ + J ) = ϕ(στ(1 + σ2) + J ) = ϕ(J ) and

ψ(τ)ψ(σ) + ψ(σ)ψ(τ) = ψ(0) = e1e1e2 + e1e2e1 = 0, so e1e2 + e2e1 = 0.

Thus, R[D8]/J ∼= C`2,0 provided the central involution σ2 is mapped into −1.
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Summary of projective constructions of C`0,2 and C`1,1

Notice first that each group N2 = Q8 and N1 = D8 can be written as follows:

The quaternionic group Q8:

Q8 = {τα0gα1
1 gα2

2 | αk ∈ {0, 1}, k = 0, 1, 2}

where τ = a2 is the central involution in Q8, g1 = a, and g2 = b. Thus,

(g1)2 = a2 = τ, (g2)2 = b2 = a2 = τ, τg1g2 = g2g1.

Observe that |g1| = |g2| = 4 and R[Q8]/J ∼= C`0,2 where J = (1 + τ).

The dihedral group D8:

D8 = {τα0gα1
1 gα2

2 | αk ∈ {0, 1}, k = 0, 1, 2}

where τ = a2 is the central involution in D8, g1 = b, and g2 = a. Thus,

(g1)2 = b2 = 1, (g2)2 = a2 = τ, τg1g2 = g2g1.

Observe that |g1| = 2, |g2| = 4 and R[D8]/J ∼= C`1,1 where J = (1 + τ).
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Reformulated Chernov’s Theorem [5]
Theorem 3

Let G be a finite 2-group of order 21+n generated by a central involution τ and
additional elements g1, . . . , gn, which satisfy the following relations:

τ 2 = 1, (g1)2 = · · · = (gp)2 = 1, (gp+1)2 = · · · = (gp+q)2 = τ , (6)

τgj = gjτ, gigj = τgjgi , i , j = 1, . . . , n = p + q, (7)

Let J = (1 + τ) be an ideal in the group algebra R[G ] and let C`p,q be the
universal real Clifford algebra generated by {ek}, k = 1, . . . , n = p + q, where

e2
i = Q(ei ) · 1 = εi · 1 =

{
1 for 1 ≤ i ≤ p;

−1 for p + 1 ≤ i ≤ p + q;
(8a)

eiej + ejei = 0, i 6= j , 1 ≤ i , j ≤ n. (8b)

Then, (a) dimR J = 2n; (b) There exists a surjective algebra homomorphism ψ
from the group algebra R[G ] to C`p,q so that kerψ = J and R[G ]/J ∼= C`p,q.
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Proof of Theorem 3

Proof.

Observe that G = {τα0gα1
1 · · · g

αn
n } | αk ∈ {0, 1}, k = 0, 1, . . . , n}. The

existence of a central involution τ is guaranteed by a well-known fact that the
center of any p-group is nontrivial, and by Cauchy Theorem. (Rotman [17])
Define an algebra homomorphism ψ : R[G ]→ C`p,q such that

1 7→ 1, τ 7→ −1, gj 7→ ej , j = 1, . . . , n. (9)

Clearly, J ⊂ kerψ. Let u ∈ R[G ]. Then, u =
∑
α λατ

α0gα1
1 · · · g

αn
n = u1 + τu2

where ui =
∑
α̃ λ

(i)
α̃ gα1

1 · · · g
αn
n , i = 1, 2, α = (α0, α1, . . . , αn) ∈ Rn+1 and

α̃ = (α1, . . . , αn) ∈ Rn. Thus, if u ∈ kerψ, then

ψ(u) =
∑
α̃

(λ
(1)
α̃ − λ

(2)
α̃ )eα1

1 · · · e
αn
n = 0

implies λ
(1)
α̃ = λ

(2)
α̃ since {eα1

1 · · · e
αn
n | (α1, . . . , αn) ∈ (Z2)n} is a basis in

C`p,q.

13 / 46



Clifford algebra C`p,q as a projection of a group algebra
Salingaros vee groups Gp,q ⊂ C`p,q

Central product structure of Gp,q
Main result

Conclusions and questions
References

Proof of Theorem 3 (Cont.)

Hence,
u = (1 + τ)

∑
α̃

λ
(1)
α̃ gα1

1 · · · g
αn
n ∈ J .

Thus, dimR kerψ = 2n, kerψ = J , dimR R[G ]/J = 21+n − 2n = 2n, so ψ is
surjective. Let ϕ : R[G ]/J → C`p,q be such that ϕ ◦ π = ψ where
π : R[G ]→ R[G ]/J is the natural map. Then, since ψ(gj) = ej ,
π(gj) = gj + J , we have ϕ(π(gj)) = ϕ(gj + J ) = ψ(gj) = ej and

π(gj)π(gi ) + π(gi )π(gj) = (gj + J )(gi + J ) + (gj + J )(gi + J )

= (gjgi + gigj) + J = (1 + τ)gjgi + J = J

for i 6= j since gigj = τgjgi in R[G ], τ is central, and J = (1 + τ). Thus,
gj + J , gi + J anticommute in R[G ]/J when i 6= j . Also, when i = j ,

π(gi )π(gi ) = (gi + J )(gi + J ) = (gi )
2 + J =

{
1 + J , 1 ≤ i ≤ p;

τ + J , p + 1 ≤ i ≤ n;
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Proof of Theorem 3 (Cont.)

Observe, that

τ + J = (−1) + (1 + τ) + J = (−1) + J in R[G ]/J .

To summarize, the factor algebra R[G ]/J is generated by the cosets gi + J
which satisfy these relations:

(gj + J )(gi + J ) + (gj + J )(gi + J ) = J ,

(gi )
2 + J =

{
1 + J , 1 ≤ i ≤ p;

(−1) + J , p + 1 ≤ i ≤ n;

Thus, the factor algebra R[G ]/J is a Clifford algebra isomorphic to C`p,q
provided J = (1 + τ) for the central involution τ in G .

Note: Example 3 shows that the map ψ : R[G ]→ C`p,q need not be defined as
in (9). This allows to define different surjective ψ maps from the same group
algebra R[G ] to different but isomorphic Clifford algebras, e.g., C`1,1

∼= C`2,0.
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Salingaros vee groups Gp,q ⊂ C`p,q

Let Gp,q be a finite group in any Clifford algebra C`p,q (simple or semisimple)
with a binary operation being just the Clifford product, namely:

Gp,q = {±ei | ei ∈ B with Clifford product}. (10)

So, Gp,q may be presented as:

Gp,q = 〈−1, e1, . . . , en | eiej = −ejei for i 6= j and e2
i = ±1〉, (11)

where e2
i = 1 for 1 ≤ i ≤ p and e2

i = −1 for p + 1 ≤ i ≤ n = p + q. In the
following, the elements ei = ei1 ei2 · · · eik will be denoted for short as ei1 i2···ik for
k ≥ 1 while e∅ will be denoted as 1, the identity element of Gp,q (and C`p,q).
This 2-group of order 2 · 2p+q = 2n+1 is known as Salingaros vee group and has
been discussed, for example, by Salingaros [18, 19, 20], Varlamov [22],
Helmstetter [9], Ab lamowicz and Fauser [2, 3], Maduranga and
Ab lamowicz [14], and most recently by Brown [4].
Gp,q is a discrete subgroup of Pin(p, q) ⊂ Γp,q (Lipschitz group)
(Lounesto [12]).
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The commutator subgroup G ′ of a group G

Definition 4

If G is a group and x , y ∈ G , then their commutator [x , y ] is the element
xyx−1y−1. If X and Y are subgroups of G , then the commutator subgroup
[X ,Y ] of G is defined by

[X ,Y ] = 〈[x , y ] | x ∈ X , y ∈ Y 〉.

In particular, the derived subgroup G ′ of G is defined as G ′ = [G ,G ].

Proposition 1

Let G be a group.

(i) G ′ is a normal subgroup of G , and G/G ′ is abelian.

(ii) If H � G and G/H is abelian, then G ′ ⊆ H.

(Rotman [17])
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Subgroup Gp,q(f ) of Gp,q

Gp,q – Salingaros vee group of order |Gp,q| = 21+p+q

G ′p,q = {1,−1} – the commutator subgroup of Gp,q

Let O(f ) be the orbit of a primitive idempotent f under the conjugate
action of Gp,q, and let Gp,q(f ) be the stabilizer of f . Let

N = |F| = [Gp,q : Gp,q(f )] = |O(f )| = |Gp,q|/|Gp,q(f )| = 2 · 2p+q/|Gp,q(f )|

then N = 2k (resp. N = 2k−1) for simple (resp. semisimple) C`p,q where
k = q − rq−p and [Gp,q : Gp,q(f )] is the index of Gp,q(f ) in Gp,q.

Gp,q(f ) � Gp,q and |Gp,q(f )| = 21+p+rq−p (resp. |Gp,q(f )| = 22+p+rq−p ) for
simple (resp. semisimple) C`p,q.

The set of commuting monomials T = {ei1 , . . . , eik } (squaring to 1) in
the primitive idempotent f = 1

2
(1± ei1 ) · · · 1

2
(1± eik ) is point-wise

stabilized by Gp,q(f ).

(for more subgroups of Gp,q see [1, 2, 3]).

19 / 46



Clifford algebra C`p,q as a projection of a group algebra
Salingaros vee groups Gp,q ⊂ C`p,q

Central product structure of Gp,q
Main result

Conclusions and questions
References

Summary of some basic properties of Gp,q

Summary of some basic properties of Gp,q

|Gp,q| = 21+p+q, |G ′p,q| = 2 because G ′p,q = {±1}
Gp,q is not simple as it has a normal subgroup of order 2m for every
m ≤ 1 + p + q (because every p-group of order pn has a normal subgroup
of order pm for every m 6= n).

The center of any group Gp,q is non-trivial since 2 | |Z(Gp,q)| and so every
group Gp,q has a central element τ of order 2. It is well-known that for
any prime p and a finite p-group G 6= {1}, the center of G is non-trivial.
(Rotman [17])

Every element of Gp,q is of order 1, 2, or 4.

Since [Gp,q : G ′p,q] = |Gp,q|/|G ′p,q| = 2p+q, each Gp,q has 2p+q linear
characters. (James and Liebeck [11]).

The number N of conjugacy classes in Gp,q, hence, the number of
irreducible inequivalent representations of Gp,q, is 1 + 2p+q (resp.
2 + 2p+q) when p + q is even (resp. odd). (Maduranga [13])
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Summary of some basic properties of Gp,q (Cont.)

We have the following (see also Varlamov [22]):

Theorem 5

Let Gp,q ⊂ C`∗p,q. Then,

Z(Gp,q) =


{±1} ∼= C2 if p − q ≡ 0, 2, 4, 6 (mod 8);

{±1,±β} ∼= C2 × C2 if p − q ≡ 1, 5 (mod 8);

{±1,±β} ∼= C4 if p − q ≡ 3, 7 (mod 8).

(12)

as a consequence of Z(C`p,q) = {1} (resp. {1, β}) when p + q is even
(resp. odd) where β = e1e2 · · · en, n = p + q, is the unit pseudoscalar
in C`p,q.

Note: In the above, Cn denotes a cyclic group of order n.
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Summary of some basic properties of Gp,q (Cont.)

Salingaros’ notation: N2k−1,N2k ,Ω2k−1,Ω2k , Sk :

Table 1: Five isomorphism classes of vee groups Gp,q in C`∗p,q

Group G Z(G) Group order dimC`p,q Z(C`p,q)

N2k−1 C2 22k+1 22k {1}
N2k C2 22k+1 22k {1}

Ω2k−1 C2 × C2 22k+2 22k+1 {1, β}
Ω2k C2 × C2 22k+2 22k+1 {1, β}
Sk C4 22k+2 22k+1 {1, β}

N2k−1 ↔ Gp,q ⊂ C`∗p,q, p − q ≡ 0, 2 (mod 8), K ∼= R;

N2k ↔ Gp,q ⊂ C`∗p,q, p − q ≡ 4, 6 (mod 8), K ∼= H;

Ω2k−1 ↔ Gp,q ⊂ C`∗p,q, p − q ≡ 1 (mod 8), K ∼= R⊕ R;

Ω2k ↔ Gp,q ⊂ C`∗p,q, p − q ≡ 5 (mod 8), K ∼= H⊕H;

Sk ↔ Gp,q ⊂ C`∗p,q, p − q ≡ 3, 7 (mod 8), K ∼= C.

(Brown [4], Lounesto [12], Salingaros [18, 19, 20], Varlamov [22])
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Vee groups Gp,q of low orders 4, 8, 16

The first few vee groups Gp,q corresponding to Clifford algebras C`p,q in
dimensions p + q = 1, 2, 3, are:

Groups of order 4: G1,0 = D4, G0,1 = C4,

Groups of order 8: G2,0 = D8 = N1, G1,1 = D8 = N1, G0,2 = Q8 = N2,

Groups of order 16: G3,0 = S1, G2,1 = Ω1, G1,2 = S1, G0,3 = Ω2.

where D8 is the dihedral group of a square, Q8 is the quaternionic group, and
D4
∼= C2 × C2. For a construction of inequivalent irreducible representations

and characters of these groups see Maduranga and Ab lamowicz [14] and
Maduranga [13].
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Definitions: elementary abelian group, extra-special groups

Definition 6 (Gorenstein [8])

A finite abelian p-group is elementary abelian if every nontrivial element has
order p.

Example 7 (D4 = C2 × C2 is elementary abelian)

(Cp)k = Cp × · · · × Cp (k-times), in particular, C2 × C2 is elementary abelian.

Definition 8 (Dornhoff [6])

A finite p-group P is extra-special if

(i) P ′ = Z(P),

(ii) |P ′| = p, and

(iii) P/P ′ is elementary abelian.
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D8 and Q8 are extra-special and non-isomorphic

Example 9 (D8 is extra-special)

D8 = 〈a, b | a4 = b2 = 1, bab−1 = a−1〉 is extra-special because:

Z(D8) = D ′8 = [D8,D8] = 〈a2〉, |Z(D8)| = 2,

D8/D
′
8 = D8/Z(D8) = 〈D ′8, aD ′8, bD ′8, abD ′8〉 ∼= C2 × C2.

Order structure: [1, 5, 2]

D8
∼= C4 o C2

∼= (C2 × C2) o C2 (semi-direct products)

Example 10 (Q8 is extra-special)

Q8 = 〈a, b | a4 = 1, a2 = b2, bab−1 = a−1〉 is extra-special because:

Z(Q8) = Q ′8 = [Q8,Q8] = 〈a2〉, |Z(Q8)| = 2,

Q8/Q
′
8 = Q8/Z(Q8) = 〈Q ′8, aQ ′8, bQ ′8, abQ ′8〉 ∼= C2 × C2.

Order structure: [1, 1, 6]

Q8 is not a semi-direct product of any of its subgroups (cf. Brown [4])
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Definitions: internal and external central products of
groups

Definition 11 (Gorenstein [8])

(i) A group G is an internal central product of two subgroups H and K if:

(a) [H,K ] = 〈1〉;
(b) G = HK ;

Note: H,K � G , Z(H),Z(K) < Z(G) and if G is a 2-group with
|Z(G)| = 2, then Z(G) = Z(H) = Z(K) ∼= C2.

(ii) A group G is an external central product H ◦ K of two groups H and K
with H1 ≤ Z(H) and K1 ≤ Z(K) if there exists an isomorphism
θ : H1 → K1 such that G is (H × K)/N where

N = {(h, θ(h−1)) | h ∈ H1}.

Note: N � (H × K) and |H ◦ K | = |H||K |/|N| ≤ |H × K | = |H||K |.
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Extra-special groups as central products

Lemma 12 (Leedham-Green and McKay [15])

An extra-special p-group has order p2n+1 for some positive integer n, and is the
iterated central product of non-abelian groups of order p3.

Theorem 13 (Leedham-Green and McKay [15])

There are exactly two isomorphism classes of extra-special groups of order
22n+1 for positive integer n. One isomorphism type arises as the iterated central
product of n copies of D8; the other as the iterated central product of n groups
isomorphic to D8 and Q8, including at least one copy of Q8. That is,

1: D8 ◦ D8 ◦ · · · ◦ D8, or,

2: D8 ◦ D8 ◦ · · · ◦ D8 ◦ Q8.

where it is understood that these are iterated central products; that is,
D8 ◦ D8 ◦ D8 is really D8 ◦ (D8 ◦ D8) and so on.

28 / 46



Clifford algebra C`p,q as a projection of a group algebra
Salingaros vee groups Gp,q ⊂ C`p,q

Central product structure of Gp,q
Main result

Conclusions and questions
References

Extra-special groups as central products (Cont.)

Lemma 14 (Dornhoff [6])

Let P1, . . . ,Pn be extra-special p-groups of order p3. Then there is one and up
to isomorphism only one central product of P1, . . . ,Pn with center of order p.
It is extra special of order p2n+1 denoted by P1 ◦ · · · ◦ Pn, and called the central
product of P1, . . . ,Pn.

Lemma 15 (Dornhoff [6])

Q8 ◦ Q8 and D8 ◦ D8 are isomorphic groups of order 32, not isomorphic to
D8 ◦ Q8. If C is a cyclic 2-group of order ≥ 4, then C ◦ Q8

∼= C ◦ D8.

Note: The above group-theoretic results provide a foundation for Salingaros’s
Theorem (next).
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Salingaros Theorem [20]

Theorem 16

Let N1 = D8, N2 = Q8, and (G)◦k be the iterated central product
G ◦ G ◦ · · · ◦ G (k times) of G . Then, for k ≥ 1:

1 N2k−1
∼= (N1)◦k = (D8)◦k ,

2 N2k
∼= (N1)◦k ◦ N2 = (D8)◦(k−1) ◦ Q8,

3 Ω2k−1
∼= N2k−1 ◦ (C2 × C2) = (D8)◦k ◦ (C2 × C2),

4 Ω2k
∼= N2k ◦ (C2 × C2) = (D8)◦(k−1) ◦ Q8 ◦ (C2 × C2),

5 Sk
∼= N2k−1 ◦ C4

∼= N2k ◦ C4 = (D8)◦k ◦ C4
∼= (D8)◦(k−1) ◦ Q8 ◦ C4

C2, C4 are cyclic groups of order 2 and 4, respectively;

D8 and Q8 are the dihedral group of a square and the quaternionic group;

C2 × C2 is elementary abelian of order 4;

N2k−1 and N2k are extra-special groups of order 22k+1;

Ω2k−1,Ω2k , Sk are of order 22k+2 (not extra-special).
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Vee groups Gp,q of orders 16, 32 as central products

The vee groups Gp,q in Clifford algebras C`p,q in dimensions p + q = 3, 4:

Order 16: G3,0 = G1,2 = S1 = N1 ◦ C4 = D8 ◦ C4 = N2 ◦ C4 = Q8 ◦ C4,

G2,1 = Ω1 = N1 ◦ (C2 × C2) = D8 ◦ (C2 × C2),

G0,3 = Ω2 = N2 ◦ (C2 × C2) = Q8 ◦ (C2 × C2),

Order 32: G4,0 = N4 = N1 ◦ N2 = D8 ◦ Q8 = 〈e123, e4〉 ◦ 〈e12, e13〉,
G3,1 = N3 = N1 ◦ N1 = D8 ◦ D8 = 〈e23, e24〉 ◦ 〈e1234, e1〉,

= N3 = N2 ◦ N2 = Q8 ◦ Q8 = 〈e4, e123〉 ◦ 〈e12, e13〉,
G2,2 = N3 = N1 ◦ N1 = D8 ◦ D8 = 〈e134, e24〉 ◦ 〈e3, e1〉,

= N3 = N2 ◦ N2 = Q8 ◦ Q8 = 〈e12, e134〉 ◦ 〈e3, e4〉,
G1,3 = N4 = N1 ◦ N2 = D8 ◦ Q8 = 〈e23, e12〉 ◦ 〈e123, e4〉,
G0,4 = N4 = N1 ◦ N2 = D8 ◦ Q8 = 〈e123, e4〉 ◦ 〈e23, e12〉.

N1 = D8,N2 = Q8,N3,N4 - extra-special groups,
C2 × C2 - elementary abelian group

31 / 46



Clifford algebra C`p,q as a projection of a group algebra
Salingaros vee groups Gp,q ⊂ C`p,q

Central product structure of Gp,q
Main result

Conclusions and questions
References

Table 2: Isomorphism classes of vee groups in Clifford algebras C`p,q, n = p + q.

XXXXXn
p-q

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

0 N0
1 S0 Ω0
2 N2 N1 N1
3 Ω2 S1 Ω1 S1
4 N4 N4 N3 N3 N4
5 S2 Ω4 S2 Ω3 S2 Ω4
6 N5 N6 N6 N5 N5 N6 N6
7 Ω5 S3 Ω6 S3 Ω5 S3 Ω6 S3
8 N7 N7 N8 N8 N7 N7 N8 N8 N7

(Salingaros [18, 19, 20])

Note: There is another way to look at the above table by the Main Theorem
(next).
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Theorem 17

Each group Gp,q satisfies all hypotheses of Chernov’s theorem.

Proof.

Easy observation from the definition of Gp,q.

Main Theorem

Every Clifford algebra C`p,q is isomorphic to a quotient of a group algebra
R[G ], where G is one of Salingaros groups N2k−1, N2k , Ω2k−1, Ω2k or Sk of
order 2p+q+1, modulo an ideal (1 + τ) generated by 1 + τ for some central
element of order 2.

Proof.

Apply Theorem 17 and Chernov’s Theorem.
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Z2-gradation of R[Gp,q]

Proposition 2 (Rotman [17])

If G is a p-group of order pn, then G has a normal subgroup of order pk for
every k ≤ n.

Corollary 18

Let G be a Salingaros vee group Gp,q. Then,

(i) G has a normal subgroup H of index 2.

(ii) G = H
·
∪ Hb for some element b 6∈ H such that b2 ∈ H.

(iii) The group algebra R[G ] is Z2-graded.
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Z2-gradation of R[Gp,q] (Cont.)

Proof of (iii):

Since G = H
·
∪ Hb, we have

R[G ] =

{∑
h∈H

xhh +
∑
h∈H

yhhb | xh, yh ∈ R

}
.

Let R[G ](0) =
{∑

h∈H xhh | xh ∈ R
}

and R[G ](1) =
{∑

h∈H yhhb | yh ∈ R
}
.

Then, since H � G , b 6∈ H, and b2 ∈ H, we have

R[G ] = R[G ](0) ⊕ R[G ](1),

R[G ](i) R[G ](j) ⊆ R[G ](i+j) mod 2, i , j = 0, 1.
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Z2-gradation of R[D8] and R[Q8]

Example 19

Let D8 = 〈a, b | a4 = b2 = 1, b−1ab = a−1〉, H = 〈a | a4 = 1〉� G , and

R[D8](0) =
{
x01 + x1a + x2a

2 + x3a
3 | xi ∈ R

}
,

R[D8](1) =
{
y0b + y1ab + y2a

2b + y3a
3b | yi ∈ R

}
.

Then, R[D8](i)R[D8](j) ⊆ R[D8](i+j) mod 2, i , j = 0, 1, since b−1ab = a3.

Example 20

Let Q8 = 〈a, b | a4 = 1, a2 = b2, b−1ab = a−1〉, H = 〈a | a4 = 1〉� G , and

R[Q8](0) =
{
x01 + x1a + x2a

2 + x3a
3 | xi ∈ R

}
,

R[Q8](1) =
{
y0b + y1ab + y2a

2b + y3a
3b | yi ∈ R

}
.

So, R[Q8](i)R[Q8](j) ⊆ R[Q8](i+j) mod 2, i , j = 0, 1, since b−1ab = a3 and a2 = b2.
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Ideal J = (1 + τ) in R[D8] and R[Q8] is homogeneous

Example 21

Let J = (1 + τ) ⊂ R[D8] = R[D8](0) ⊕ R[D8](1) where τ = a2 ∈ Z(D8). Then,
1 + τ ∈ R[D8](0). Let j = (X (0) + X (1))(1 + τ) ∈ J where X (i) ∈ R[D8](i),
i = 0, 1. Then, J is homogeneous because the homogeneous parts of j belong
to J:

J 3 j = (X (0) + X (1))(1 + τ) = X (0)(1 + τ)︸ ︷︷ ︸
j(0)∈J

+X (1)(1 + τ)︸ ︷︷ ︸
j(1)∈J

.

Example 22

Let J = (1 + τ) ⊂ R[Q8] = R[Q8](0) ⊕ R[Q8](1) where τ = a2 ∈ Z(Q8). Then,
1 + τ ∈ R[Q8](0). Let j = (X (0) + X (1))(1 + τ) ∈ J where X (i) ∈ R[Q8](i),
i = 0, 1. Then, J is homogeneous because the homogeneous parts of j belong
to J:

J 3 j = (X (0) + X (1))(1 + τ) = X (0)(1 + τ)︸ ︷︷ ︸
j(0)∈J

+X (1)(1 + τ)︸ ︷︷ ︸
j(1)∈J

.
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Conclusions and questions

(a) Every Clifford algebra C`p,q is isomorphic to one of the quotient algebras:

(i) R[Neven]/J , R[Nodd]/J , R[Sk ]/J when C`p,q is simple, and

(ii) R[Ωeven]/J , R[Ωodd]/J when C`p,q is semisimple,

of Salingaros vee groups Neven, Nodd, Sk , Ωeven, and Ωodd modulo the
ideal J = (1 + τ) for a central element τ of order 2.

(b) Is there a Z2-graded isomorphism between R[Gp,q]/J and C`p,q?

(c) Should J = (1 + τ) always be homogeneous?

(d) How does the group structure of Gp,q, e.g., presence of normal subgroups
and the central product structure, carry over to the algebra structure of
C`p,q? If so, how?

(e) Use the central-product structure of Salingaros vee groups Gp,q to explain
the Z2-gradation of R[Gp,q]/J , and so of C`p,q.

(f) Apply the character theory and real representation methods of 2-groups to
the group algebras R[Gp,q] and their quotients R[Gp,q]/J , and hence to
the Clifford algebras C`p,q.
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